

Notion de logique

Séries des exercices

Exercice

Écrire en utilisant les quantificateurs logique, les propositions suivantes :

 (R_1) : "Pour tout entier naturel n, il existe un entier naturel m tel que n=2m"

 (R_2) : "Pour tout réel x et y, il existe un entier naturel n tel que x+y=n"

 (R_3) : " Le carré de tout réel et positive "

 $(R_4): "f: \mathbb{R} \longrightarrow \mathbb{R}$ est strictement croissante"

Exercice

(P₁): $(-3)^2 = 9$ et $\sqrt{9} = -3$

2 $(P_2): (\pi \in \mathbb{Q}) \text{ ou } (\sqrt{3} + \sqrt{7} > 3)$

 $(P_3): \quad (\forall x \in \mathbb{R} : x^2 > 1)$

4 $(P_4): (\exists x \in \mathbb{N} : 3n+1=0)$

Exercice

Donner la négation des propositions suivantes :

(P): $(\forall (a;b) \in \mathbb{R}^2)$; $(a^2 + b^2 \ge ab \quad ou \mid a \mid + \mid b \mid \ge \mid a + b \mid)$

 $(Q): (\exists x \in \mathbb{Z}); (x+1 > x)$

3 $(R): (\forall x \in \mathbb{R})(\forall y \in \mathbb{R}); x^2 - 2x = y^2 - 2y \Rightarrow x = y$

4 (S): $(\forall x \in \mathbb{N}^*); x \neq 1 \Rightarrow x \geqslant y$

Exercice

Montrer en utilisant la table de vérité que (Lois de MORGAN) :

 $\overline{(p \quad et \quad q)} \Leftrightarrow (\overline{p} \quad ou \quad \overline{q})$

 $\overline{(p \quad ou \quad q)} \Leftrightarrow (\overline{p} \quad et \quad \overline{q})$

Montrer que : $(p \Rightarrow q) \Leftrightarrow (\overline{p} \quad ou \quad q)$

On déduire que : $(p \Rightarrow q) \Leftrightarrow (p \ et \ \overline{q})$

Exercice

- On considerent la proposition P suivants : $(\forall y \in \mathbb{R})(\exists x \in \mathbb{R}) : x^2 + xy + y^2 = 0$
 - Donner la negation de P.
 - b Montrer que P est fausse
- On considerent la proposition R suivants : $(\forall x \in [0,2])(\exists y \in \left\lfloor \frac{1}{2}, \frac{3}{4} \right\rfloor) : xy x + 2y 1 = 0$
 - Donner la négation de P.
 - b Montrer que P est vraie
- On considèrent la proposition Q suivants : $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) : y^2 3xy^2 + 2x^2 = 1$
 - La proposition Q est elle vraie? Justifier votre réponse
 - b Déterminer la négation de la proposition Q

Exercice

- Montrer que : $x \neq 5 \Rightarrow \frac{x+3}{x-3} \neq 4, \forall x \neq 3$
- Montrer que : $(\forall a \in \mathbb{R}^+)(\forall b \in \mathbb{R}^+): a \neq b \Rightarrow \frac{a^2 + 5}{a^2 + 2} \neq \frac{b^2 + 5}{b^2 + 2}$
- Montrer que : $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R}): (xy \neq 1 \quad et \quad x \neq y) \Rightarrow \frac{x}{x^2 + x + 1} \neq \frac{y}{y^2 + y + 1}$

Exercice

Montre les implications suivants :

- $(\forall x \in \mathbb{R}^*)(\forall y \in \mathbb{R}^*) : 2x + y = 1 \quad \Rightarrow \quad \frac{1}{x^2 + y^2} \leqslant 20$
- $(\forall a, b, c \in \mathbb{R}) : [|a-b| \leqslant c \quad et \quad |a+b| \leqslant c] \Rightarrow |ab| \leqslant \frac{c^2}{2}$
- $(\forall a,b,c \in \mathbb{R}): a>0 \text{ et } b>0 \text{ et } c>0 \Rightarrow \frac{ab}{c} + \frac{bc}{a} + \frac{ca}{b} \geqslant a+b+c$

Exercice

Montre les équivalences suivants :

$$(\forall x \in \mathbb{R}) : 1 - \frac{1}{\sqrt{1 + x^2}} \geqslant 0$$

Montrer que
$$\forall x, y \in]1, +\infty[$$
 on a $x+y+2\sqrt{(x-1)(y-1)} > 2$

Exercice

- Soit une fonction f définie sur $\mathbb R$ par : $f(x)=x^2-x+1$, Montrer que f ni paire ni impaire
- Montrer que la proposition $P: (\forall x \in \mathbb{R}): 3cosx \neq 2sin^2x$ est une proposition fausse
- Montrer que la proposition : Tout entier naturel divisible par 2 et par 6 est divisible par 12 est fausse

Exercice

- Montrer que : $(\forall n \in \mathbb{N})$ on a $4|n^2$ ou $4|n^2-1$
- Résoudre dans \mathbb{R} l'équation : $2x^2 |x-3| 4 = 0$
- Résoudre dans \mathbb{R} le système :

$$\begin{cases} 2|x+1| - y = 4\\ |x+2| + 2y = 6 \end{cases}$$

Exercice

- Montrer que $\forall n \in \mathbb{N}^*$; $1+3+5+....+(2n+1)=(n+1)^2$
- Montrer que $\forall n \in \mathbb{N}^*; 1+2+3+....+n = \frac{n(n+1)}{2}$
- Montrer que $\forall n \in \mathbb{N}^*$; $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$
- 4 Montrer que $\forall n \in \mathbb{N}^*$; $1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$
- Montrer que $\forall n \in \mathbb{N}^* 1$; $1 \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{3} + \dots + \frac{1}{n-1} \times \frac{1}{n} = 1 \frac{1}{n}$
- 6 Montrer que $\forall n \in \mathbb{N}$, $1+3+3^2+.....+3^n = \frac{3^{n+1}-1}{2}$
- Montrer que $\forall n \in \mathbb{N}^*$, 3 divise $3^n + 4^n 1$

- Soit x un réel strictement positif Montrer que $\forall n \in \mathbb{N}$, $(1+n)^n \geqslant 1+nx$
 - En déduire que $\forall x \in \mathbb{N}^*$, on a: $3^n > n$
 - b En déduire que $\forall x \in \mathbb{N}^{\star}$,on a : $(n+1)^n \geqslant 2n^n$

