

Généralités sur les fonctions numériques

Série d'exercices

Exercice

- Soit f une fonction numérique définie par $f(x) = 2x^2 3$. Déterminer les images des nombres suivants 1; -1; $\frac{1}{2}$; $\sqrt{5}$ et -2 par la fonction f.
- 2 Déterminer l'ensemble de définition de fonctions suivantes :

$$\bullet f_1(x) = x^3; \bullet f_2(x) = \frac{\sqrt{x}}{2x^2 + 2x - 4}; \bullet f_3(x) = \frac{4x^2 - 5}{\sqrt{2x^2 + 2x - 4}}; \bullet f_4(x) = \frac{\sqrt{2 - x}}{|x + 2| - 3}; \bullet f_5(x) = \frac{1}{\cos^2(x) - 1}$$

Exercice

Comparer les fonctions suivantes : $\star f_1(x) = x$ et $g_1(x) = \frac{x^2}{x}$; $\star f_2(x) = \frac{1}{\sqrt{x}-2}$ et $g_2(x) = \frac{\sqrt{x}+2}{x-4}$

Exercice

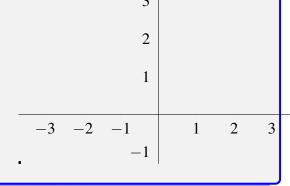
La figure ci-dessous presente la courbe d'une fonction f

Déterminer D_f l'ensemble de définition de f.

2 Déterminer les images des nombres suivants : -3; -2; 2; 3.

Déterminer les Antécedents de 2 et 4

Dresser le tableau de variation de la fonction f



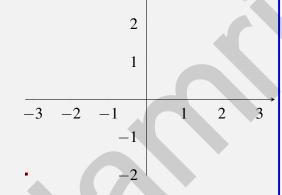
Exercice

Etudier la parité de fonctions suivantes :
$$\bullet f_1(x) = |x| - \frac{1}{x^2}$$
 ; $\bullet f_2(x) = \frac{x}{x^2-1}$; $\bullet f_3(x) = |x-1| - |x+1|$; $\bullet f_4(x) = \sin(x) - x\cos(x)$

Exercice

La courbe (C_f) ci-contre est la courbe d'une fonction f .

- 1 Donner l'ensemble de définition de f.
- 2 Dresser le tableau de variation de f.
- Résoudre graphiquement les inéquations : $f(x) \ge 0$, f(x) < 0 et $f(x) \ge 3$
- On considère les fonctions g et h définie par $g(x) = \sqrt{f(x)}$ et $h(x) = \frac{1-\sqrt{x}}{f(x)}$. Donner D_g et D_h



Exercice

Soit f une fonction définie par : $f(x) = \frac{2x-5}{2-x}$.

- 1 Déterminer D_f l'ensemble de définition de f.
- 2 Dresser le tableau de variations de f sur D_f .
- Construire la courbe de f dans un repère orthonormé.
- 4 On considère la fonction g définie par : $g(x) = \frac{2 |x| 5}{2 |x|}.$
 - a) Déterminer D_g l'ensemble de définition de g.
 - b) Étudier la parité de g.
 - c) En déduire le tableau de variations de g.
 - d) Construire la courbe de g dans le même repère.

Exercice

Soit f une fonction numérique définie par : $f(x) = x + \frac{4}{x}$

- 1 Déterminer D_f l'ensemble de définition de f.
- 2 Montrer que f est impaire.
- Montrer si a et b deux nombres réel distincts non nuls, alors : $\frac{f(b)-f(a)}{b-a} = \frac{ba-4}{ba}$
- 4 Etudier les variations de f sur chacun des intervalles $[2; +\infty[$ et]0; 2].
- 5 En déduire les variations de f sur chacun des intervalles $]-\infty;-2]$ et [-2;0[.
- Oresser le tableau de variations de f sur D_f .

Exercice

Soit f une fonction définie par : $f(x) = -x^2 + 2x$.

- Déterminer D_f l'ensemble de définition de f.
- Montrer que 1 est un maximum de f sur D_f .
- Montrer si a et b deux nombres réel distincts de D_f , alors : $\frac{f(b)-f(a)}{b-a}=2-a-b$
- Etudier les variations de f sur chacun des intervalles $[1; +\infty[$ et $]-\infty; 1]$.
- Dresser le tableau de variations de f sur D_f .
- On considère la fonction g définie par $:g(x) = -x^2 + 2|x|$
 - a Déterminer D_g l'ensemble de définition de g.
 - b Montrer que pour tout x de \mathbb{R} , on a : g(x) = f(x)
 - c En déduire le tableau de variation de g.

