

Arithmétique dans \mathbb{Z} .

LES EXERCICES DU CHAPITRE:

Exercice

les Questions suivantes sont indépendantes.

Soit p un nombre premier supérieur ou égale à 3

Montrer que : $p \equiv 1[4]$ ou $p \equiv 3[4]$.

Soit p un nombre premier supérieur ou égale à 5.

1 Montrer que : $p^2 + 11 \equiv 0[12]$.

2 Montrer que la somme de trois entiers naturels impairs consécutifs n'est pas un nombre premier.

Soit $a \in \mathbb{Z}$. Le nombre $a^4 + a^2 + 1$ est-il premier?

Soient a,b et c des entiers naturels non nuls. Montrer que si ab = cd alors $a^2 + b^2 + c^2$ n'est pas un nombre premier.

Soit $(x,y) \in \mathbb{N}^2$ tel que x > 1 et y > 1. Montrer que $N = a^4 + 4b^4$ n'est pas premier.

Déterminer les valeurs de l'entier naturel n pour lesquelles $n^4 + 4$ est premier.

Soit p un nombre premier supérieur ou égale à 3. Résoudre dans \mathbb{N}^2 l'équation : $x^2 - y^2 = p$.

Exercice

LES QUESTIONS 1 ET 2 SONT INDÉPENDANTES :

On pose : a = 257 et b = 45.

1-a) En utilisant l'algorithme d'Euclide, calculer $a \wedge b$

1-b) En déduire qu'il existe un couple $(\alpha, \beta) \in \mathbb{Z}^2$ tel que $\alpha a + \beta b = a \wedge b$ avec α et β des entiers à déterminer.

En utilisant l'algorithme d'Euclide , calculer $137 \wedge 726$, puis déterminer le couple (x_0, y_0) tel que : $726x_0 + 137y_0 = 1$

Exercice

1 Montrer que :

$$(\forall n \in \mathbb{N}): (n^2+4n+1) \wedge (n+4) = 1$$

L.Chapter 1 Arithmétique dans Z.

- 2 développer $(n^2 + 1)^2$ et $(n^2 + 1)^3$.
- 3 En déduire à l'aide du théorème de Bezout, que :

$$(\forall n \in \mathbb{N}) (n^4 + 2n^2 + 1) \wedge (n^4 + 3n^2 + 3) = 1$$

Exercice

Déterminer tous les entiers naturels n tels que : $n \le 3 \times 10^3$ et n = 5[139] et n = 5[140].

Exercice

Soit *p* un nombre premier.

- Résoudre dans $\mathbb{Z}/p^2\mathbb{Z}$ l'équation : $x^2 = \overline{0}$.
- 2 Résoudre dans $\mathbb{Z}/49\mathbb{Z}$ l'équation : $x^2 + \overline{8}x + \overline{16} = \overline{0}$.
- Résoudre dans \mathbb{Z} l'équation : $4x^2 2x 2 \equiv 0$ [3]

Exercice

On considère l'équation E dans \mathbb{Z}^2 donnée par :

$$(E): 324x - 245y = 7$$

- 1 Montrer que si (x,y) est une solution de (E), alors le nombre x est divisible par 7
- 2 Résoudre l'équation (E)
- Soit (x, y) une solution de (E). On pose $d = x \wedge y$. Déterminer les valeurs possibles du nombre d
- Déterminer les couples (x, y) solutions de l'équation (E) tels que : $x \wedge y = 1$

Exercice

Soit $n \in \mathbb{Z}$.

- Montrer que $n^7 + 6n \equiv 0[7]$
 - a/ Montrer que $n^5 n \equiv 0[5]$
 - b/ En déduire que : $n(n^2 1)(n^2 4) \equiv 0[5]$

Montrer que $n^2(n^2 - 1)(n^2 + 1) \equiv 0[60]$

Exercice

Les Questions de cet exercice sont indépendantes.

Soit $N \in \mathbb{N}$ tel que : $N = \overline{52}_p$ et $N = \overline{42}_q$.

- Déterminer les valeurs de p et q.
- Déterminer les entiers naturels α et β tels que : $\overline{\beta\beta\beta}_{(b)} = \overline{\alpha}\overline{\alpha}_{(2)}$
- On considère les nombres suivants : $x = \overline{236}_{(8)}$ et $y = \overline{347}_{(8)}$. Calculer x + y et $x \times y$
- Soit b un entier naturel supérieur ou égale à 2 tel que : $\overline{45}_{(b)} + \overline{36}_{(b)} = \overline{103}_{(b)}$. $\overline{45}_{(b)} \times \overline{36}_{(b)}$ Calculer:
- 5 Représenter le nombre $\overline{4523}_{(8)}$ dans le système de numération binaire