

CALCUL TRIGONOMÉTRIQUE

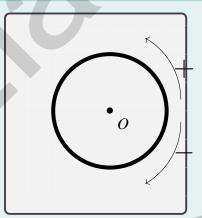
Dans tous ce qui suis le plan est rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) et on note I et J les points tel que : $\overrightarrow{OI} = \vec{i}$ et $\overrightarrow{OJ} = \vec{j}$

Le cercle trigonométrique

1 Cercle orienté et plan orienté.

Définition

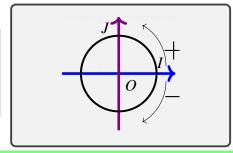
- ► Soit (C) un cercle sur le plan Le cercle (C) est dit orienté si on choisit sur (C) un sens positif, appelé aussi sens direct.
- ▶ On choisit en général le sens positif, le sens contraire de rotation des aiguilles d'une montre, l'autre sens est appelé sens négatif ou indirect.
- ➤ Orienter le plan, c'est faire le choix du même sens de parcours pour tous les cercles du plan.



Cercle trigonométrique

Définition

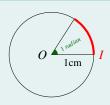
Le cercle trigonométrique lié au repère (O, \vec{i}, \vec{j}) est le cercle de centre O et de rayon égal à l'unité de longueur, orienté dans le sens positif.



Le radian

Définition

Un radian est la mesure de l'angle au centre qui intercepte sur le cercle un arc de longueur égal à l'unité de longueur c'est à dire égal au rayon du cercle trigonométrique.



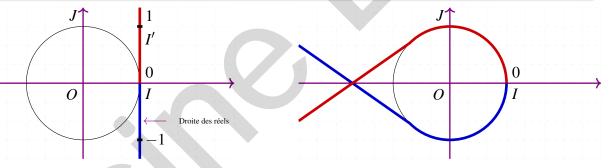
Remarque

- ► Il existe une unité de mesure des angles autre que le radian et le degré, elle est appelée le grade. Un angle plat mesure πrd ; 180° et 200 grade
- ► Si x, y et z sont respectivement les mesures en radian, en degré et en grade d'un angle géométrique alors : $\frac{x}{\pi} = \frac{y}{180} = \frac{z}{200}$.

Abscisses curvilignes - Abscisse curviligne principale

Définition

- ▶ Lorsque le zéro de la droite des réels coïncide avec le point I sur le cercle trigonométrique.
- ▶ On enroule la demi-droite des réels positifs sur le cercle trigonométrique dans le sens positif et la demi droite des réels négatifs dans le sens négatif.
- ► Chaque point *M* du cercle va coïncider avec une infinité de nombres réels tous appelés abscisses curvilignes du point *M*



Remarque

Le périmètre du cercle trigonométrique est égal à $2\pi \times 1 = 2\pi$

Propriété

- Si x et x' sont deux abscisses curvilignes d'un même point M du cercle trigonométrique Alors $x' = x + 2k\pi$ avec $k \in \mathbb{Z}$.
- ▶ Il existe une seule abscisse curviligne de M appartient à]- π , π], s'appelle abscisse curviligne principale du point M

Angles orientés

Angles orientés

Définition

- \triangleright On considère le plan orienté et O, M et N trois points distincts du plan le couple ([OM): [ON)) s'appelle l'angle orienté des deux demi-droites [OM) et [ON] et on note $(\overrightarrow{OM}, \overrightarrow{ON})$
- Si $\vec{u} = \overrightarrow{OM}$ et $\vec{v} = \overrightarrow{ON}$ alors l'angle orienté $(\overrightarrow{OM}, \overrightarrow{ON})$ est l'angle orienté des deux vecteurs \vec{u} et \vec{v} .

Propriété

- \triangleright soient O, M, N et P quatre points du plan orienté.
- L'angle $(\overrightarrow{\overline{OM}}, \overrightarrow{\overline{OM}})$ est nul $(\overrightarrow{\widehat{OM}}, \overrightarrow{\overline{ON}}) + (\overrightarrow{\overline{ON}}, \overrightarrow{\overline{OP}}) = (\overrightarrow{\overline{OM}}, \overrightarrow{\overline{OP}})$ relation de CHASLES
- soient \vec{u}, \vec{v} et \vec{w} trois vecteurs non nuls
- L'angle (\vec{u}, \vec{u}) est nul. $(\overrightarrow{u}, \vec{v}) + (\overrightarrow{v}, \overrightarrow{w}) = (\overrightarrow{u}, \overrightarrow{w})$ relation de CHASLES

Mesure d'un angle orienté

Définition

- Soient \vec{u} et \vec{v} deux vecteurs non nuls; M et N les points du plan tel que $\vec{u} = \overrightarrow{OM}$ et $\vec{v} = \overrightarrow{ON}$ et A et B les points d'intersection respectifs du cercle trigonométrique avec chacun des demidroites [OM) et [ON).
- ▶ On appelle mesure de l'angle orienté (\vec{u}, \vec{v}) les réels (b-a) où a et b sont des abscisses curvilignes respectifs des points A et B sur le cercle trigonométrique (\mathscr{C}).
- \triangleright On considère un cercle trigonométrique (\mathscr{C}) de centre O lié au repère orthonormé direct (0,OI,OJ) et A un point de (\mathscr{C}) d'abscisse curviligne x le nombre réel x est une mesure de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OA})$ noté $(\overrightarrow{OI}, \overrightarrow{OA})$.

Propriété

soient \vec{u}, \vec{v} et \vec{w} trois vecteurs non nuls et $k \in \mathbb{R}$

$$(\vec{v}, \vec{u}) \equiv -(\overrightarrow{\vec{u}, \vec{v}})[2\pi]$$

$$(\overrightarrow{\vec{u},\vec{v}}) + (\overrightarrow{v},\overrightarrow{w}) \equiv (\vec{u},\vec{w})[2\pi]$$

$$(\overrightarrow{k}\overrightarrow{u},\overrightarrow{v}) \equiv (\overrightarrow{u},\overrightarrow{k}\overrightarrow{v})[2\pi]$$

$$(-\vec{u}, -\vec{v}) \equiv (\overrightarrow{\vec{u}, \vec{v}})[2\pi]$$

$$(\overrightarrow{k}\overrightarrow{u},\overrightarrow{v}) \equiv (\overrightarrow{u},\overrightarrow{kv})[2\pi$$

$$(\overrightarrow{ku}, \overrightarrow{v}) \equiv (\overrightarrow{u}, \overrightarrow{v})[2\pi] \text{ si } k > 0, \text{ et } (k\overrightarrow{u}, \overrightarrow{v}) \equiv (\overrightarrow{u}, \overrightarrow{v}) + \pi[2\pi] \text{ si } k < 0$$

Les lignes trigonométriques

1 Lignes trigonométriques

Définition

- Soit M un point du cercle trigonométrique ($\mathscr C$) d'abscisse curviligne x et (D) la droite gente a ($\mathscr C$) en I
- Le couple de coordonnées du point M dans le repère (O, \vec{i}, \vec{j}) est $(\cos x, \sin x)$.
- ▶ Si $M \neq J$ et $M' \neq J'$ L'intersection de la droite (OM) et (D) est le point T dont l'abscisse dans le repêre $(O; \vec{i}; \vec{j})$ est tan x.

Propriété

Soit M un point du cercle trigonométrique (\mathscr{C}) , d'abscisse curviligne x. Ona :

- $ightharpoonup \cos^2 x + \sin^2 x = 1$ (propriété fondamentale)
- $-1 \le \cos x \le 1$ et $-1 \le \sin x \le 1$
- $ightharpoonup \cos(x+2k\pi) = \cos x \text{ et } \sin(x+2k\pi) = \sin x \text{ pour tout } k \in \mathbb{Z}.$
- $tan x = \frac{\sin x}{\cos x} \text{ et } 1 + \tan^2 x = \frac{1}{\cos^2 x} \text{ pour } x \neq \frac{\pi}{2} + k\pi \text{ avec } k \in \mathbb{Z}.$

Lignes trigonométriques usuelles

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{3}}{2}$	-1
tanx	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	×	$-\sqrt{3}$	-1	$\frac{-\sqrt{3}}{3}$	0

V

Relation entre les lignes trigonométriques

1 Angles opposés

Propriété

Pour tout $x \in \mathbb{R}$

- $ightharpoonup \cos(-x) = \cos x$
- $ightharpoonup \sin(-x) = -\sin x$
- $\tan(-x) = -\tan x$ $\frac{\pi}{2} + k\pi \text{ avec } k \in \mathbb{Z}$

 $x \neq$

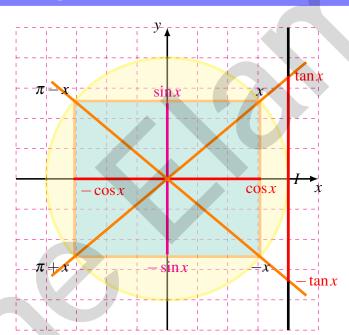
Exemple

$$\cos\left(-\frac{\pi}{6}\right) = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}; \sin\left(-\frac{\pi}{4}\right) = -\sin\frac{\pi}{4} = -\frac{\sqrt{2}}{2}$$

Angles supplémentaires et opposés supplémentaires propriété :

Propriété

$$pour \cos(\pi - x) = -\cos x$$
$$\cdot \sin(\pi - x) = \sin x$$
$$\cdot \tan(\pi - x) = -\tan x$$
$$\cdot \cos(\pi + x) = -\cos x$$
$$\sin(\pi + x) = -\sin x$$
$$\tan(\pi + x) = \tan x$$



Exemple

$$\cos\left(\frac{2\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = -\cos\frac{\pi}{3} = -\frac{1}{2}$$
$$\tan\left(\frac{5\pi}{4}\right) = \tan\left(\pi + \frac{\pi}{4}\right) = \tan\frac{\pi}{4} = 1$$

Angles complémentaires et opposés complémentaires

Propriété

Pour tout $x \in \mathbb{R}$ on a :

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

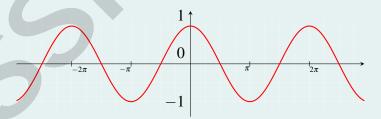
Exemple

$$\cos \frac{\pi}{6} = \cos \left(\frac{\pi}{2} - \frac{\pi}{3}\right) = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
$$\sin \frac{2\pi}{3} = \sin \left(\frac{\pi}{2} + \frac{\pi}{6}\right) = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

La fonction cosinus

Définition

La fonction qui a tout nombre réel x, assoie le nombre réel cos x est appelée fonction cosinus et notée cos. A l'aide du logiciel geogebra on a construit sa courbe ci-contre.



Propriété

La fonction cos est définie sur \mathbb{R} et pour tout x de $\mathbb{R}: -1 \le \cos x \le 1$.

- On a pour tout x de \mathbb{R} ; $\cos(x+2\pi) = \cos x$ donc la fonction cos et périodique de période 2π .
- On a pour tout x de \mathbb{R} ; $\cos(-x) = \cos x$; donc la fonction cos est paire.

le tableau de variation de la fonction cos sur $[-\pi, \pi]$:

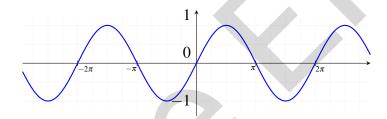
х	$-\pi$ 0
cosx	-1 1 1

La fonction sinus.

Définition

La fonction qui a tout nombre réel x, associe le nombre réel sinx est appelée la fonction sinus et notée sin.

A l'aide du logiciel geogebra on a construit sa courbe ci-contre.

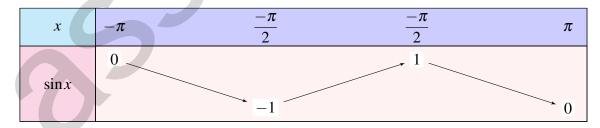


Propriété

La fonction sin est définie sur \mathbb{R} et pour tout x de $\mathbb{R} - 1 \le \sin x \le 1$.

- On a pour tout x de $\mathbb{R}\sin(x+2\pi) = \sin x$ donc la fonction sin est périodique de période 2π
- ▶ On a pour tout $x \in \mathbb{R}\sin(-x) = -\sin x$ donc la fonction sin est impaire.

Le tableau de variation de la fonction $\sin \sup[-\pi, \pi]$



CHAPTER 1 CALCUL TRIGONOMÉTRIOUE

Les équations trigonométriques fondamentales

Propriété

Si |a| > 1 alors les équations trigonométriques $\cos x = a$ et $\sin x = a$ non pas de solutions.

- $ightharpoonup \cos x = \cos \alpha$ équivaut à $x = \alpha + 2k\pi$ ou $x = -\alpha + 2k\pi$ avec $k \in \mathbb{Z}$.
- $ightharpoonup \sin x = \sin \alpha$ équivaut à $x = \alpha + 2k\pi$ ou $x = \pi \alpha + 2k\pi$ avec $k \in \mathbb{Z}$
- ▶ $\tan x = \tan \alpha$ équivaut à $x = \alpha + k\pi$ avec $k \in \mathbb{Z}$

Cas particuliers:

- ▶ $\cos x = -1$ équivautà $x = (2k+1)\pi$ avec $k \in \mathbb{Z}$
- ▶ $\cos x = 1$ équivaut à $x = 2k\pi$ avec $k \in \mathbb{Z}$
- ▶ $\sin x = -1$ équivaut à $x = -\frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$
- ▶ $\sin x = 1$ équivaut à $x = \frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$

→ Exemple

Résoudre dans \mathbb{R} l'équation : $\cos x = \frac{\sqrt{3}}{2}$ On a : $\cos x = \frac{\sqrt{3}}{2}$ équivaut à $\cos x = \cos \frac{\pi}{6}$ donc $x = \frac{\pi}{6} + 2k\pi$ ou $x = \frac{-\pi}{6} + 2k\pi$ D'où l'ensemble des solutions dans \mathbb{R} est

$$S = \left\{ \frac{-\pi}{6} + 2k\pi; \frac{\pi}{6} + 2k\pi/k \in \mathbb{Z} \right\}$$

Presented the Resonant Response Resonant Resona

$$S = \left\{ \frac{-\pi}{6} + 2k\pi; \frac{\pi}{6} + 2k\pi/k \in \mathbb{Z} \right\}$$

Résoudre dans \mathbb{R} l'équation : $\tan x = \sqrt{3}$ La fonction tan est définie siet seulement si $x \neq \frac{\pi}{2} + 2k\pi/k \in \mathbb{Z}$ On a : $\tan x = \sqrt{3}$ équivaut à $\tan x = \tan \frac{\pi}{3}$ donc $x = \frac{\pi}{3} + k\pi$ où $k \in \mathbb{Z}$ D'où l'ensemble des solutions dans \mathbb{R} est

$$S = \left\{ \frac{\pi}{3} + k\pi/k \in \mathbb{Z} \right\}$$

1. CHAPTER 1

Propriété

- ▶ $\cos x \ge \cos \alpha$ si et seulement si : $-\alpha + 2k\pi \le x \le \alpha + 2k\pi$ avec $k \in \mathbb{Z}$
- $ightharpoonup \cos x > \cos \alpha$ et seulement si : $-\alpha + 2k\pi < x < \alpha + 2k\pi$ avec $k \in \mathbb{Z}$.
- $ightharpoonup \cos x \le \cos \alpha$ si et seulement si : $x \in]-\pi+2k\pi, -\alpha+2k\pi] \cup [\alpha+2k\pi, \pi+2k\pi]/k \in \mathbb{Z}$
- $ightharpoonup \cos x < \cos \alpha$ si et seulement si : $x \in]-\pi + 2k\pi, -\alpha + 2k\pi[\cup]\alpha + 2k\pi, \pi + 2k\pi[/k \in \mathbb{Z}]$

Propriété

- ▶ $\sin x \ge \sin \alpha$ si et seulement si : $\alpha + 2k\pi \le x \le \pi \alpha + 2k\pi/k \in \mathbb{Z}$
- $ightharpoonup \sin x > \sin \alpha$ et seulement si : $\alpha + 2k\pi < x < \pi \alpha + 2k\pi/k \in \mathbb{Z}$
- \rightarrow $\sin x \le \sin \alpha$ et seulement $\sin x \in [-\pi + 2k\pi, \alpha + 2k\pi] \cup [\pi \alpha + 2k\pi, \pi]/k \in \mathbb{Z}$
- $ightharpoonup \sin x < \sin \alpha$ si et seulement

$$ix \in [-\pi + 2k\pi, \alpha + 2k\pi[\cup]\pi - \alpha + 2k\pi, \pi + 2k\pi]/k \in \mathbb{Z}$$

Propriété

- ▶ $tan x \ge tan α$ si et seulement si $α + kπ \le x < \frac{π}{2} + kπ/k ∈ ℤ$
- ▶ tan x > tan α si et seulement si $α + kπ < x < \frac{π}{2} + kπ/k ∈ ℤ$
- ▶ $\tan x \le \tan \alpha$ si et seulement si $-\frac{\pi}{2} + k\pi < x \le \alpha + k\pi/k \in \mathbb{Z}$
- ► tan x < tan α si et seulement si $-\frac{\pi}{2} + k\pi < x < α + k\pi/k ∈ ℤ$

Exemple

► Résoudre dans $[0, 2\pi]$ l'inéquation $\cos x \ge \frac{1}{2}$ On a $\cos x \ge \frac{1}{2}$ si et seulement si $\cos x \ge \cos \frac{\pi}{3}$

d'après la figure ci - contre, la partie sur $[0,2\pi]$ telle que $\cos x \ge \frac{1}{2}$ est la partie coloriée en bleu c'est à dire $\left[0,\frac{\pi}{3}\right] \cup \left[\frac{5\pi}{3},2\pi\right]$

donc
$$S = \left[0, \frac{\pi}{3}\right] \cup \left[\frac{5\pi}{3}, 2\pi\right]$$

▶ Résoudre sur $[0, \pi]$ l'inéquation $\sin x \le \frac{\sqrt{2}}{2}$

On a : $\sin x \le \frac{\sqrt{2}}{2}$ si et seulement si $\sin x \le \sin \frac{\pi}{4}$

D'après la figure ci - contre, la partie sur $[0,\pi]$ telle que $\sin x \le \frac{\sqrt{2}}{2}$ est la partie colorie en bleu c'est à dire $\left[0,\frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4},\pi\right]$.

Donc $S = \left[0, \frac{\pi}{4}\right] \cup \left[\frac{3\pi}{4}, \pi\right]$