

Nombres complexes

L'ensemble $\mathbb C$ - forme algébrique

1 L'ensemble C

Proposition

Il existe un ensemble noté $\mathbb C$, appelé **ensemble des nombres complexes** qui possède les propriétés suivantes :

- $\mathbb C$ contient l'ensemble des nombres réels : $\mathbb R \subset \mathbb C$
- \mathbb{C} contient un nombre noté i tel que $i^2 = -1$.
- Tout nombre complexe z s'écrit de manière unique z = a + ib avec a et b réels.
- L'addition et la multiplication des nombres réels se prolongent aux nombres complexes et les règles de calcul restent les mêmes.

Exemple

$$z_1 = 2 + 3i \in \mathbb{C}$$
; $z_2 = -3 \in \mathbb{C}$; $z_3 = 2i \in \mathbb{C}$ et $z_4 = -\sqrt{7} \in \mathbb{C}$

Remarque

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

2 Forme algébrique

D Définition

- L'écriture z = a + ib est appelée la forme algébrique du nombre complexe z.
- le réel a est la partie réelle de z, notée $\Re e(z)$.
- le réel 1 b est la partie imaginaire de z notée $\Im m(z)$.

d'après l'unicité de l'écriture sous la forme algébrique on donc

COROLAIRE

deux nombres complexes sont égaux ssi ils ont la même partie réelle et la même partie imaginaire soit z = a + ib et z' = a' + ib' on a $z = z' \iff \begin{cases} a = a' \\ b = b' \end{cases}$

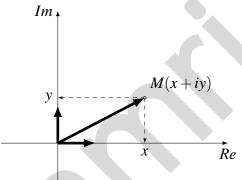
Cas particulier

- Si $\Re e(z)=0$ on dit que z est **imaginaire pure** L'ensemble des imaginaires pur est noté i $\mathbb R$
- Si $\Im m(z) = 0$ on dit que z réel

Représentation graphique d'un complexe

Le plan est rapporté à un repère orthonormal $(O; \overrightarrow{u}; \overrightarrow{v})$

• A tout nombre complexe z = x + iy avec x et y réel, on associe le point M de coordonnées (x;y). On dit que M, ou que le vecteur \overrightarrow{OM} est l' image de z. est que z est l'affixe du point M ou du vecteur OM.



- L'affixe de M se note souvent z_M et celui de OM se note aff(OM)
- L'axe des abscisses $(O; \vec{u})$ est appelé axe des réels, l'axe des ordonnées
- Le plan est alors appelé plan complexe. $(O; \vec{v})$ est appelé axe des imaginaires purs.

Application

- Placer les points A, B et C d'affixe respectif: $z_A = -1 2i$, $z_B = 2 i$ et $z_C = \frac{3}{2} + i$
- calculer les distance OA et AB

Opérations sur les nombres complexes

Règles du calcul

Les règles de calcul sur les nombres réels s'étendent au nombres complexes.

Application

Écrire les nombres complexes suivents sous la forme algebrique

- i(2+5i)+3(2-i) (2-i)(3-2i)

- $\bullet (\sqrt{2} i)(\sqrt{2} + i) \quad \bullet (2 i)^{3}$
- (a+ib)(a-ib) $(a+ib)^2$

Application

- 1 Calculer i^3 , i^4 , i^5 i^7 , i^8 , i^9
- En déduire la forme algébrique de $z_n = i^n$ en fonction de n pour tout $n \in \mathbb{N}$
- Donner la forme algébrique de i²⁰⁰¹, i¹⁴³⁰, i²⁰¹⁹

2 Inverse d'un complexe non nul

Proposition

tout nombre complexe non nul z admet un inverse noté $\frac{1}{z}$

- Preuve

soit
$$z = x + iy$$
 avec $(x, y) \neq (0, 0)$
Alors $\frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{(x + iy)(x - iy)} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i$

Application

Mettre sous la forme algébrique \bullet $\frac{1}{i}$ \bullet $\frac{2}{1-i\sqrt{3}}$ \bullet $\frac{\sqrt{2}-i}{i\sqrt{2}+1}$ \bullet $\frac{2i}{1+i}$

Application

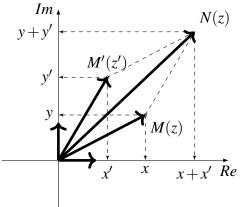
Soientt $z_1 = -1 + 2i$ et $z_2 = 1 - i$ deux nombres complexes;

Écrire sous la forme algébrique : $\bullet z_1^2 - z_2 \quad \bullet z_1 z_2^2 \quad \bullet \frac{z_1}{z_2} \quad \bullet \frac{1}{z_1} + \frac{1}{z_2}$

3 Interprétations géométriques

Soit M et M' deux points du plan complexe d'affixes respectives z = x + iy et z' = x' + iy'. N et P deux points tels que : $\overrightarrow{ON} = \overrightarrow{OM} + \overrightarrow{OM'}$ et $\overrightarrow{OP} = \overrightarrow{kOM}$ On a z + z' = (x + x') + i(y + y') et kz = kx + iky

 $\mathbf{aff}(\overrightarrow{ON}) = z + z' \text{ et } \mathbf{aff}(\overrightarrow{OP}) = kz$



Propriété

Soit A et B deux points du plan complexes d'affixe respectives z_A et z_B \vec{u} et \vec{v} deux vecteurs et k un réel

- $aff(\vec{u} + \vec{v}) = aff(\vec{u}) + aff(\vec{v})$ et $aff(k\vec{u}) = kaff(\vec{u})$
- $\vec{u} = \vec{v} \iff aff(\vec{u}) = aff(\vec{v})$
- Soit *I* le milieu de [*AB*].on a $z_I = \frac{z_A + z_B}{2}$
- A, B et C sont alignés si et seulement si $\exists k \in \mathbb{R}$: $z_B z_A = k(z_C z_A)$

Application

Dans le plan complexe munie du repère o.n.d $(O; \overrightarrow{u}; \overrightarrow{v})$; on considère les points A, B et C qui ont pour affixe respectives $z_A = -2 + i$, $z_B = 3 + 3i$ et $z_C = 1 + \frac{11}{5}i$

- calculer les affixes des vecteurs \overrightarrow{AB} et \overrightarrow{AC}
- En déduire que A, B et C sont alignés
- Placer les points A, B et C

Application

On considère les points A, B, C et D d'affixes respectives $z_A = 3 + i$, $z_B = 2 - 2i$, $z_C = 2i$ et $z_D = 1 + 5i$

- 1 faire une figure
- montrer que ABCD est un parallélogramme
- calculer l'affixe de son centre

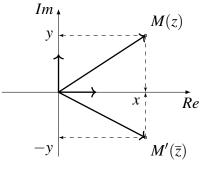
Conjugué d'un nombre complexe

Définition D

Soit z = a + ib $(x; y) \in \mathbb{R}^2$ un nombre complexe. on appelle **conjugué** de z noté \bar{z} le nombre complexe $\overline{z} = a - ib$

Interprétation géométrique

Dans le plan complexe si le point M a pour affixe z, alors l'image M' de \bar{z} est le symétrique de M par rapport à l'axe réel



Exemple

•
$$\overline{2+i} = 2-i$$
 • $\overline{3-i\sqrt{2}} = 3+i\sqrt{2}$ • $\overline{2i} = -2i$ • $\overline{1+\sqrt{2}} = 1+\sqrt{2}$

Propriété

$$ightharpoonup \overline{\overline{z}} = z \qquad
ightharpoonup z\overline{z} =$$

$$z\overline{z} = a^2 + b^2$$

$$ightharpoonup \overline{zz'} = \overline{zz'}$$

$$\blacktriangleright \ \overline{z^n} = \overline{z}^n$$

$$\qquad \left(\frac{1}{z}\right) = \frac{1}{\overline{z}} \ (z \neq 0)$$

1. CHAPTER 1 NOMBRES COMPLEXES

Conéquences

- $\blacksquare z + \overline{z} = 2\Re e(z) \text{ et } z \overline{z} = 2i\Im m(z)$
- $\blacksquare z \in \mathbb{R} \text{ (r\'eel)} \iff \overline{z} = z \iff \Im m(z) = 0$
- $\blacksquare z \in i\mathbb{R}$ (imaginaire pur) $\iff \bar{z} = -z \iff \Re e(z) = 0$

Exemple

Soit les nombres complexe $z_1 = \frac{2+i}{1-2i}$ et $z_2 = \frac{2-i}{1+2i}$

- Vérifier que $z_1 = \overline{z_2}$, et en déduire que $z_1 + z_2$ est réel et que $z_1 z_2$ est imaginaire pur.
- 2 Simplifier $z_1 + z_2$ et $z_1 z_2$

Application

résoudre dans $\mathbb C$ les équations suivante

- $4\bar{z} + 2i 4 = 0$
- $(1+i)\bar{z}+1-i=0$
- $3\overline{z} 2iz = 5 3i$

Application

Déterminer l'ensemble des points M d'affixe z tel que $Z = z^2 + \overline{z}$ soit un réel

Application

oit z un nombre complexe $\neq -1$. on pose $Z = \frac{z-1}{z+1}$.

- On pose z = x + iy déterminer $\Re e(Z)$ et $\Im m(Z)$ en fonction de x et y
- En déduire l'ensemble des points M d'affixe z tel que Z est imaginaire pur

Application

Soit *P* le polynôme défini sur \mathbb{C} par : $P(z) = z^2 + 4z + 5$

- Montrer que si z_0 est une racine de P alors $\overline{z_0}$ est aussi racine de P
- Vérifier que -2 + i est une racine de P et en déduire une autre racine de P

Module d'un nombre complexe

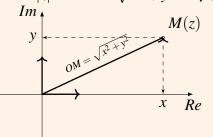
Définition et propriétés

D Définition

Soit M un point du plan complexe d'affixe $z = x + \mathrm{i} y$ où $(x;y) \in \mathbb{R}^2$

La distance $OM = \sqrt{x^2 + y^2} = s'$ appelle **me module** de z et se note |z|

on a:
$$|z| = OM = \sqrt{x^2 + y^2} = \sqrt{z\overline{z}}$$



Exemple

•
$$|1 - i\sqrt{3}| = \sqrt{1+3} = 2$$
 • $|3i| = 3$ • $|-2| = 2$

Propriété

Soit z et z' deux nombres complexes

$$\blacksquare |z| = 0 \iff z = 0$$

$$\blacksquare |z \times z'| = |z| \times |z'|$$

$$\blacksquare \left| \frac{z'}{z} \right| = \frac{|z'|}{|z|} \ (z \neq 0)$$

$$\blacksquare |z| \geqslant |\Re e(z)|$$

$$\blacksquare |z+z'| \leqslant |z| + |z'|$$

$$\blacksquare |\overline{z}| = |-z| = |z|$$

$$\blacksquare \left| \frac{1}{z} \right| = \frac{1}{|z|} \quad (z \neq 0)$$

$$\blacksquare |z^n| = |z|^n \ (n \in \mathbb{N})$$

$$\blacksquare |z| \geqslant |\Im m(z)|$$

Application

Calculer le module de chacun des nombre complexes

Inégalité triangulaire

$$(2-i)^4$$

$$\frac{3+i\sqrt{3}}{\sqrt{2}-i}$$

$$3 \left(\frac{1+i}{\sqrt{3}-i}\right)^{8}$$

HAPTER 1 NOMBRES COMPLEXES

Application

Dans le plan complexe on considère les points A, B et C d'affixes respectives a=-2, $b=1+\mathrm{i}$ et $c=-1-3\mathrm{i}$

- Placer les points A, B et C
- 2 Montrer que ABC est un triangle rectangle

Application

Soit z un nombre complexe non nul

Montrer que $|z| = 1 \iff z = \frac{1}{\overline{z}}$

Interprétation géométrique

Propriété

Dans le plan complexe muni du repére o.n.d $(O; \overrightarrow{u}; \overrightarrow{v})$, on considère les points A, B et M d'affixes respectives z_A, z_B et z

- ▶ Distance : $AB = |z_A z_B|$
- ▶ L'ensemble des point M(z) tel que $|z z_A| = |z z_B|$ est la médiatrice du segment [AB]
- L'ensemble des point M(z) tel que $|z-z_A|=r$ où (r>0) est le cercle de centre A et de rayon r

Preuve

Exercice

Application

Dans chacun des cas suivants déterminer l'ensemble des points M du plan complexe d'affixe z tel que

$$|z-3|=5$$

$$2 |z - 1 + 2i| = 2$$

$$|z-2i| = |z+1|$$

$$|\bar{z}+2-i|=3$$

$$|iz + 2| = |\bar{z} + 2i + 1|$$

Application

on considère dans le plans complexe le point A d'affixe $z_A = 1$.

A chaque point $M \neq A$ d'affixe z on associe le point M' d'affixe $z' = \frac{z-1}{1-\overline{z}}$

- Montrer que $M' \in C(O; 1)$
- 2 Montrer que $\frac{z'-1}{z-1}$ est un réel, puis en déduire que A, M et M' son alignés
- 3 construire le point M' dans le cas ou z = -2 + i

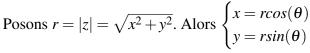
Argument et forme trigonométrique d'un complexe non nul

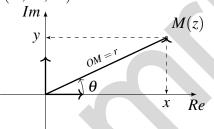
Argument d'un complexe non nul

a partir de ce paragraphe le plan complexe est muni du repère o.n.d $(O; \overrightarrow{u}; \overrightarrow{v})$ avec $\overrightarrow{u} = \overrightarrow{OI}$ et $\overrightarrow{v} = \overrightarrow{OJ}$

Á tout point M(x,y) du plan distinct de O on fait associer le nombre complexe $z=x+\mathrm{i} y$

Soit θ une mesure de l'angle orienté \overrightarrow{u} , \overrightarrow{OM}) $\theta = (\overrightarrow{u}, \overrightarrow{OM})[2\pi]$





D Définition

Soit M un point du plan complexe d'affixe z = x + iy, $x \ne 0$ et $y \ne 0$.

On appelle argument de z, noté arg(z), toute mesure de l'angle orienté $(\vec{u}; \overrightarrow{OM})$ et on écrit

$$\arg(z) \equiv \left(\overrightarrow{u}, \overrightarrow{OM}\right) [2\pi].$$

Exemple

Le plan complexe est rapporté au repère o.n d $(O; \overrightarrow{u}; \overrightarrow{v})$

On considère les point A, B, C et D d'affixes respectives a = 2, b = 2 + 2i, c = -2 + 2i et d = -i

$$(\overrightarrow{u}; \overrightarrow{OA}) = 0 \Longrightarrow \arg(2) = 0[2\pi]$$

$$\left(\overrightarrow{\overrightarrow{u}}; \overrightarrow{OB}\right) = \frac{\pi}{4} \Longrightarrow \arg(2+2i) = \frac{\pi}{4}2\pi$$

$$(\overrightarrow{u}; \overrightarrow{OC}) = \frac{3\pi}{4} \Longrightarrow \arg(-2 + 2i) = \frac{3\pi}{4} [2\pi]$$

$$\langle \overrightarrow{u}; \overrightarrow{OD} \rangle = \frac{-\pi}{2} \Longrightarrow \arg(-i) = \frac{-\pi}{2} [2\pi]$$

Conséquences

* Argument d'un nombre réel

•
$$z \in \mathbb{R}^{*+} \iff \arg(z) \equiv 0[2\pi]$$

•
$$z \in \mathbb{R}^{*-} \iff \arg(z) \equiv \pi[2\pi]$$

ainsi $z \in \mathbb{R} \iff z = 0$ ou $\arg(z) \equiv 0[\pi]$

$$\bullet \arg(\bar{z}) \equiv -\arg(z)[2\pi]$$

•
$$arg(-z) \equiv \pi + arg(z)[2\pi]$$

* Argument d'un imaginaire pur

•
$$z \in i\mathbb{R}^{*+} \iff \arg(z) \equiv \frac{\pi}{2} 2\pi$$
]

•
$$z \in i\mathbb{R}^{*-} \iff \arg(z) \equiv \frac{-\pi}{2} 2\pi$$
]

ainsi
$$z \in i\mathbb{R} \iff z = 0$$
 ou $\arg(z) \equiv \frac{\pi}{2}[\pi]$

Forme trigonométrique d'un complexe non nul

D Définition

Le plan complexe est rapporté au repère o.n d $(O; \overrightarrow{u}; \overrightarrow{v})$

Soit M un point du plan complexe d'affixe $z \neq 0$

On pose OM = |z| = r et $\theta \equiv \arg(z)[2\pi]$

L'écriture $z = r(\cos(\theta) + i\sin(\theta))$ est appelée forme trigonométrique de z

Exemple

Soit
$$z = 1 + i\sqrt{3}$$

On a: $|z| = \sqrt{1+3} = 2$
Donc $z = 2\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))$
Ainsi $2(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))$ est une forme trigonométrique de $1 + i\sqrt{3}$

Relation entre forme algébrique et forme trigonométrique

Proposition

Soit z un complexe non nul

Si z = x + iy est la forme algébrique de z et $z = r(\cos(\theta) + i\sin(\theta))$ une forme trigonométrique de z

Alors
$$r = |z| = \sqrt{x^2 + y^2}$$
 et
$$\begin{cases} \cos(\theta) = \frac{x}{r} = \frac{\Re e(z)}{|z|} \\ \sin(\theta) = \frac{y}{r} = \frac{\Im m(z)}{|z|} \end{cases}$$

Exemple

• Soit
$$z = 2 + 2i$$
, On a: $|z| = \sqrt{4 + 4} = 2\sqrt{2}$

Donc
$$z = 2\sqrt{2} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i \right) = 2(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}))$$

$$\bullet \quad \text{soit } z_2 = 4\left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right)$$

On a
$$\cos(\frac{2\pi}{3}) = -\frac{1}{2} \operatorname{et} \sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2}$$
. Donc $z_2 = -2 + 2\sqrt{3}i$

Exemple

Écrire sous forme trigonométrique les nombres complexes suivants

- $z_1 = \sqrt{3} + 3i$
- $z_2 = -2 + 2i$

•
$$z_3 = \sqrt{6} - i\sqrt{2}$$

•
$$z_4 = -3 - 3i$$

4 Propriétés des arguments

Proposition

Soit z et z' deux nombres complexes non nuls, on a :

$$\blacksquare$$
 $\arg(z^n) = n \arg(z)[2\pi]$, pour tout $n \in \mathbb{N}$

$$\blacksquare$$
 $\operatorname{arg}\left(\frac{1}{z}\right) = -\operatorname{arg}(z)[2\pi]$

Conséquences

Notons $r(cos(\theta) + icos(\theta))$ par $[r, \theta]$

Si
$$z = [r, \theta]$$
 [2π] et $z' = [r', \theta']$ [2π] avec $(r; r') \in (\mathbb{R}^{*+})^2$ et $(\theta; \theta') \in \mathbb{R}^2$ Alors on a :

$$\blacksquare \ \overline{z} = [r, -\theta] \ [2\pi]$$

$$\blacksquare \frac{1}{z} = \left[\frac{1}{r}, -\theta\right] \left[2\pi\right]$$

$$\blacksquare \frac{z'}{z} = \left[\frac{r'}{r}, \theta' - \theta\right] \left[2\pi\right]$$

$$\blacksquare \ z^n = [r^n, n\theta] \ [2\pi]$$

Application

Écrire sous la forme trigonométrique les nombre complexe suivants

$$z_1 = (\sqrt{3} - i)^{11}$$

$$z_2 = \frac{1+i}{2i}$$

$$z_3 = \frac{\sqrt{6} - i\sqrt{2}}{2 + 2i}$$

4
$$z_4 = (1 + i \tan(\frac{\pi}{8}))(-1 + i)$$

Application

On considère les nombres complexes $z_1 = 1 - i$, $z_2 = 1 + i\sqrt{3}$

- Écrire sous la forme algébrique les nombres complexes suivant
 - iz_1 $\overline{z_1}$ $z_1 \times z_2$ $(z_1 \times z_2)^{12}$
- 2 Écrire $z_1 \times z_2$ sous la forme algébrique

1. CHAPTER 1 NOMBRES COMPLEXES

- 3 En déduire les lignes trigonométrique de $\frac{\pi}{12}$
- Interprétation géométrique de l'argument

Propriété

Soit A, B, C, et D quatre points deux à deux distincts d'affixes respectives z_A , z_B , z_C et z_D

$$\blacksquare \left(\overrightarrow{u}; \overrightarrow{AB}\right) = \arg(z_B - z_A)[2\pi]$$

$$\blacksquare \left(\overrightarrow{\overrightarrow{AB}}; \overrightarrow{AC}\right) = \arg\left(\frac{z_C - z_A}{z_B - z_A}\right) [2\pi]$$

$$\blacksquare \left(\overrightarrow{\overrightarrow{AB};\overrightarrow{CD}}\right) = \arg\left(\frac{z_D - z_A}{z_R - z_A}\right) [2\pi]$$

Application

Dans chacun des cas suivants, déterminer l'ensemble des points M d'affixe z satisfaisants la condition

$$\blacksquare$$
 arg $(z-1-2i) = \frac{\pi}{3}[2\pi]$

$$\blacksquare \operatorname{arg}(\mathrm{i}z) = \frac{\pi}{4}[2\pi]$$

$$\blacksquare \arg(\frac{z-1+2i}{z+1}) = \frac{\pi}{2}[2\pi]$$

Conséquences

- $\blacksquare \text{ trois points distincts } A, B, \text{ et } C \text{ sont align\'es} \Longleftrightarrow (\overrightarrow{AB}; \overrightarrow{AC}) = 0[\pi] \iff \arg(\frac{z_C z_A}{z_B z_A}) = 0[\pi]$
- $\blacksquare \text{ les droites } (AB) \text{ et } (CD) \text{ sont parallèles} \Longleftrightarrow (\overrightarrow{AB}; \overrightarrow{CD}) = 0[\pi] \iff (\arg \frac{z_C z_D}{z_B z_A}) = 0[\pi]$
- les droites (AB) et (CD) sont perpendiculaires $\iff (\overrightarrow{AB}; \overrightarrow{CD}) = \frac{\pi}{2}[\pi] \iff (\arg \frac{z_C z_D}{z_B z_A}) = \frac{\pi}{2}[\pi]$

Application

- A, B, C trois point d'affixe respectives $z_A = 2i$, $z_B = 2 + i$, $z_C = 1 i$
 - Écrire le complexe $\frac{z_C z_B}{z_A z_B}$ sous la forme trigonométrique et algébrique
 - 2 En déduire la nature du triangle *ABC*

Application

- A, B, C trois point d'affixe respectives $z_A = 1 + i$, $z_B = 3 + 5i$, $z_C = 2 + 2\sqrt{3} + i(3 \sqrt{3})$
 - 1 calculer AB et AC, en déduire la nature de ABC
 - 2 Déterminer une mesure de l'angle $(\overrightarrow{AB}; \overrightarrow{AC})$

3 En déduire que *ABC* est un triangle équilatérale

VII

Forme exponentielle d'un nombre complexe

1 Définition

D

Définition

Le nombre complexe de module 1 et d'argument θ sera noté $e^{i\theta}$:

$$e^{i\theta} = cos(\theta) + isin(\theta)$$

Exemple

$$\bigcirc$$
 $e^{i\pi} = -1$

$$\bigcirc e^{i\frac{\pi}{2}} = i$$

2 Cas générale

Nous avons vu que tous nombre complexe z non nul peut s'écrire sous la forme $z = |z|(cos(\theta) + isin(\theta))$

D

Définition

 $z=r\mathrm{e}^{\mathrm{i}\theta}$. est une forme exponentielle d'un complexe de module r et dont θ est un argument :

$$z = |z|e^{i\theta} = |z|(cos(\theta) + isin(\theta))$$

3 Opérations sur les forme exponentielles

(T)

Théorème

Soient r et r' deux réels strictement positives et θ et θ' deux réels

$$\blacksquare \ \overline{r e^{i\theta}} = r e^{-i\theta}$$

$$-re^{i\theta} = re^{i(\pi+\theta)}$$

$$\blacksquare \frac{1}{re^{i\theta}} = \frac{1}{r}e^{-i\theta}$$

Application

- Déterminer le module et un argument de $z_1 = -2i$, $z_2 = 1+i$, $z_3 = -\sqrt{3}+i$ $z_4 = -3e^{i\frac{3\pi}{5}}$
- Déterminer une forme exponentielle de z_1 , z_2 , z_3 , z_4 , $z_2^2z_3$, z_1z_4 , $\frac{z_3}{z_2}$,
- Montrer que z_3^{2019} est un imaginaire pur

Formule de Moivre

 \mathbf{T} Théorème

> Pour tout réel θ et pour tout entier naturel n, on a : $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$ $(e^{i\theta})^n = e^{ni\theta}$ Elle s'écrit aussi

Application

Déterminer cos(2x) et cos(3x) en fonction de cos(x)

Les deux formules d'Euler

Théorème

Pour tout réel θ $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$

Application

 $\cos^2(x) = \frac{1 + \cos(2x)}{2} \text{ et}$ Montrer que

 $\cos(x)\cos(y) = \frac{1}{2}(\cos(x+y) + \cos(x-y)) \text{ et que } \blacksquare \quad \sin^3(x) = \frac{3\sin(x) - \sin(3x)}{4}$

Application

- Montrer que pour tout x de \mathbb{R} : $1 + e^{ix} = (e^{i\frac{x}{2}} + e^{-i\frac{x}{2}})e^{i\frac{x}{2}}$
- En déduire une forme trigonométrique du complexe $z = 2 + \sqrt{2} + i\sqrt{2}$
- En déduire $\cos(\frac{\pi}{8})$ et $\sin(\frac{\pi}{8})$

Les équations du seconde degrés à coefficient réels

On appelle équation du seconde dégrée è coefficient réels toute équation de la forme $az^2 + bz + c = 0$ ou $a \in \mathbb{R}^*, (b,c) \in \mathbb{R}^2$

NOMBRES COMPLEXES I.CHAPTER 1

Résolution de l'équation $z^2 = \delta$

Proposition

Soit δ un réel

- si $\delta \geqslant 0$ alors $z^2 = \delta \iff z = \pm \sqrt{\delta}$
- si $\delta < 0$ alors $z^2 = \delta \iff z = \pm i\sqrt{|\delta|}$

Exemple

- $z^2 = -4 \iff z = 2i \text{ ou } z = -2i$ $z^2 = -3 \iff z = i\sqrt{3} \text{ ou } z = -i\sqrt{3}$

Résolution de l'équation $az^2 + bz + c = 0$ **ou** a,b **et** c **sont des réels**

Posons $\Delta = b^2 - 4ac$

On a
$$az^2 + bz + c = 0 \iff \left(z + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$$

on conclut que:

(T)Théorème

- Si $\Delta = 0$ l'équation admet une unique solution dans \mathbb{R} : $z_0 = \frac{-b}{2a}$
- Si $\Delta > 0$ l'équation admet deux solutions dans $\mathbb{R} : z_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$
- Si $\Delta < 0$ l'équation admet deux solutions conjugués $\mathbb{C} : z_1 = \frac{-b i\sqrt{|\Delta|}}{2a}$ et $z_2 =$ $-b+i\sqrt{|\Delta|}$

Remarque

- toute expression $Q(z) = az^2 + bz + c$ se factorise dans \mathbb{C} et $Q(z) = az^2 + bz + c =$ $a(z-z_1)(z-z_2)$
- $Q(z) = az^2 + bz + c = a(z \frac{b}{a}z + \frac{c}{a}) = a(z Sz + P)$ $S = z_1 + z_2 = \frac{-b}{a}$ et $P = z_1 \times z_2 = \frac{c}{a}$

Exemple

Résoudre dans
$$\mathbb{C}$$
: $z - 8\sqrt{3}z + 64 = 0$

Application

Résoudre dans \mathbb{C} les équation suivantes

- $2z^2 + z + 3 = 0$
- $2z^2 + 6z + 5 = 0$
- $z^2 + z + 2 = 0$

1. CHAPTER 1 NOMBRES COMPLEXES

- $z^2 6z + 13 = 0$
- $(z+i)^2 + (z+i) + 2 = 0$
- $((-iz+3+3i)^2-2(-iz+3+3i)+2=0$

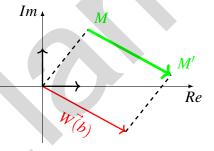
Écritures complexes de transformations

1 Écriture complexe d'une translation

soit t la translation de vecteur \vec{W} d'affixe b et M(z) un point du plan complexe

M'(z') l'image de M(z) par la translation t.

Donc : $\vec{MM'} = \vec{W} \iff z' - z = b$



Théorème

 \vec{W} un vecteur d'affixe b On a équivalence :

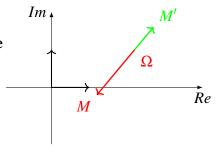
- 1 t la translation de vecteur \vec{W} d'affixe b
- 2 l'écriture complexe de t est z' = z + a

Écriture complexe d'une homothétie

soit Ω un point d'affixe ω et k un **réel non nul** h **l'homothétie de centre** Ω de rapport k

M'(z') l'image de M(z) par l'homothétie h.

Donc: $\Omega \vec{M}' = k \Omega \vec{M} \iff z' - \omega = k(z - \omega)$



T Théorème

 Ω un point d'affixe $\,\omega$ et $\,k$ un réel non nul On a équivalence :

- h l'homothétie de centre Ω(ω) de rapport k
- 2 l'écriture complexe de h est $z' \omega = k(z \omega)$

Remarque

- $h(\Omega) = \Omega$. Ω est l'unique point invariant par $h_{(\Omega,k)}$ $(k \neq 1)$
- si k = -1 alors h est la symétrie centrale de centre Ω

I. CHAPTER 1 NOMBRES COMPLEXES

3 Écriture complexe d'une rotation

soit Ω un point d'affixe ω et θ un réel. r la rotaion de centre Ω et d'angle θ

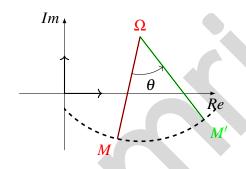
M'(z') l'image de M(z) par la rotation r.

Donc :
$$r(M) = M' \iff \begin{cases} \Omega M' = \Omega M \\ \hline{(\overrightarrow{\Omega M}, \overrightarrow{\Omega M'})} = \theta[2\pi] \end{cases}$$

$$\iff \begin{cases} \frac{|z' - \omega|}{|z - \omega|} = 1 \\ \arg(\frac{z' - \omega}{z - \omega}) = \theta[2\pi] \end{cases}$$

$$\iff \frac{z' - \omega}{z - \omega} = e^{i\theta}$$

$$\iff z' - \omega = e^{i\theta}(z - \omega)$$



T Théorème

 Ω un point d'affixe ω et θ un réel . On a équivalence :

- 1 r est la rotation de centre $\Omega(\omega)$ et d'angle θ
- 2 l'écriture complexe de r est $z' \omega = e^{i\theta}(z \omega)$

Remarque

- \blacksquare si $\theta = 0$ alors r(M) = M pour tout point M du plan
- \blacksquare si $\theta = \pi$ alors $r = s_{\Omega}$
- r(Ω) = Ω. Ω est l'unique point invariant par $r_{(Ω,θ)}$ (θ ≠ 0)

Application

- Déterminer l'écriture complexe de la translation de vecteur \overrightarrow{u}
- Déterminer l'écriture complexe de la translation qui transforme A(2-3i) en B(4+5i)