

Les primitives

Primitives d'une fonction numérique:

D

Définition

Une fonction F est une primitive d'une fonction f définie sur un intervalle I si : $\forall x \in I$; F'(x) = f(x)

Exemple

- Fonction primitive de la fonction f(x) = 4x + 2 sur \mathbb{R} est $F: x \mapsto x^2 + 3x$
- Fonction primitive de la fonction $f(x) = \cos(x) \operatorname{sur} \mathbb{R} \operatorname{est} F : x \mapsto \sin(x)$

Propriété

Toute fonction continue sur un intervalle I admet une fonction primitive sur I.

Propriété

F est une primitive d'une fonction f définie sur un intervalle I.

Toute fonction primitive G de f sur I est de la forme G(x) = F(x) + c; $(c \in \mathbb{R})$

Exemple

Les fonctions primitives de la fonction f(x) = 4x + 2 sur \mathbb{R} sont de la forme $F(x) = x^2 + 3x + c$ avec $c \in \mathbb{R}$

Propriété

F est une primitive d'une fonction f définie sur un intervalle I, $x_0 \in I$ et $y_0 \in \mathbb{R}$; il existe une seule fonction primitive G de f qui vérifie la condition $G(x_0) = y_0$

Exemple

Déterminer la fonction primitive de $f(x) = x^3 - 2x + 3$ qui prend la valeur 0 en -1

Les primitives de f sont de la forme $F(x) = \frac{1}{4}x^4 - x^2 + 3x + c$; $c \in \mathbb{R}$

Puisque
$$F(-1) = 0 \iff \frac{1}{4}(-1)^4 - (-1)^2 + 3 \times (-1) + c = 0$$

 $\iff \frac{1}{4} - 4 + c = 0$
 $\iff c = \frac{15}{4}$

conclusion:

La fonction primitives de $f(x) = x^3 - 2x + 3$ qui prend la valeur 0 en -1 est : $G(x) = \frac{1}{4}x^4 - x^2 + 3x + \frac{15}{4}$

Fonctions primitives de la somme de deux fonction - le produit d'une fonction run réel α

Propriété

F et G sont les primitives respectivement de f et g sur I, on a :

- \clubsuit F+G est une primitive de f+g.
- \clubsuit αF est une primitive de αf .

Exemple

Soient f(x) = 3x et $g(x) = \cos(x)$, leurs fonctions primitives sont respectivement $F(x) = 6x^2 + c$ et $G(x) = \sin(x) + c'$ avec c et $c' \in \mathbb{R}$

Opérations sur les fonctions primitives - Tableau des fonctions primitives des

Opérations sur les fonctions primitives

Fonction <i>h</i>	H primitive de h
f'+g'	f+g
$\alpha f'$	αf
$f' \times g + f \times g'$	$f \times g$
g'	1
$-\frac{1}{g^2}$	\overline{g}
$f' \times g - f \times g'$	\underline{f}
g^2	g
$f' \times f^n ; n \neq -1$	$\frac{1}{n+1}f^{n+1}$
$f' \times g' \circ f$	$g \circ f$
$f'(ax+b) ; a \neq 0$	$\frac{1}{a}f(ax+b)$

Tableau des fonctions primitives des fonctions usuelles

Fonction f	F primitive de f ($c \in \mathbb{R}$)
f(x) = 0	F(x) = c
$f(x) = a ; a \in \mathbb{R}$	F(x) = ax + c
f(x) = x	$F(x) = \frac{1}{2}x^2 + c$
$f(x) = x^n ; n \in \mathbb{Z} \setminus \{-1\}$	$F(x) = \frac{1}{n+1}x^{n+1} + c$
$f(x) = x^r \; ; \; r \in \mathbb{Q} \setminus \{-1\}$	$F(x) = \frac{1}{r+1}x^{r+1} + c$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x} + c$
$f(x) = \sin(x)$	$F(x) = -\cos(x) + c$
$f(x) = \sin(ax + b); a \neq 0$	$F(x) = -\frac{1}{a}\cos(ax+b) + c$
$f(x) = \cos(x)$	$F(x) = \sin(x) + c$
$f(x) = \cos(ax + b); a \neq 0$	$F(x) = \frac{1}{a}\sin(ax+b) + c$
$f(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	$F(x) = \tan(x) + c$
$f(x) = \frac{u'(x)}{\sqrt{u(x)}}$	$F(x) = 2\sqrt{u(x)} + c$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + c$