

Les suites

Exercice

Considérons la suite numérique (u_n) définie par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{1}{2 - u_n} \quad ; n \in \mathbb{N} \end{cases}$$

1 Calculer u_1 et u_2

2 Montrer par récurrence que $(\forall n \in \mathbb{N})$ $u_n < 1$

3 a- Montrer que $(\forall n \in \mathbb{N})u_{n+1} - u_n = \frac{(u_n - 1)^2}{2 - u_n}$

b- Déduire la monotonie de (u_n) , puis montrer qu'elle est convergente.

4 Posons $v_n = \frac{u_n - 2}{u_n - 1}$, pour tout $n \in \mathbb{N}$

a Calculer v_0 , et montrer que (v_n) est une suite arithmétique de raison r=1.

b Montrer que $(\forall n \in \mathbb{N})u_n = \frac{v_n - 2}{v_n - 1}$

Calculer v_n en fonction de n, et déduire que $(\forall n \in \mathbb{N})u_n = \frac{n}{n+1}$. Calculer $\lim_{x \to +\infty} u_n$

Exercice

Soit (u_n) la suite définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n - 4}{u_n - 3}; n \in \mathbb{N} \end{cases}$

1 Calculer u_1 et u_2

2 Démontrer que $(\forall n \in \mathbb{N})u_{n+1} - 2 = \frac{u_n - 2}{3 - u_n}$

a démontrer par récurrence que $(\forall n \in \mathbb{N})u_n < 2$

b c) démontrer que $(\forall n \in \mathbb{N})u_{n+1} - u_n = \frac{(u_n - 2)^2}{3 - u_n}$

déduire que la suite (u_n) est croissante et qu'elle est convergente.

 $3 \text{ posant } v_n = \frac{1}{2 - u_n}; \forall n \in \mathbb{N}$

a calculer $v_{n+1} - v_n$ puis déduire que la suite (v_n) est arithmétique de raison r = 1

b Calculer v_0 puis calculer v_n en fonction de n

Exercice

Soit (u_n) la suite définie par : $\begin{cases} u_0 = 8 \\ u_{n+1} = \frac{1}{4}u_n + 3 \end{cases}$

- Calculer u_1 et u_2
- démontrer par récurrence que $u_n > 4$; $\forall n \in \mathbb{N}$
- démontrer que $u_{n+1} u_n = \frac{-3}{4} (u_n 4); \forall n \in \mathbb{N}$
 - a déduire que la suite (u_n) est décroissante et qu'elle est convergente
- 4 Posant $v_n = u_n 4; \forall n \in \mathbb{N}$
 - a a) Calculer v_0
 - b Démontrer que la suite (v_n) est géométrique de raison

$$q=\frac{1}{4}$$
.

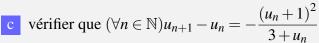
Calculer v_n en fonction de n puis déduire que

$$u_n = 4\left(\frac{1}{4}\right)^n + 4; \forall n \in \mathbb{N}. \text{ calculer } \lim_{n \to +\infty} u_n$$

Exercice

soit $(u_n)_{IN}$ la suite définie par : $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{u_n - 1}{u_n + 3}; n \in N \end{cases}$

- Calculer u_1 et u_2
 - Démontrer que $(\forall n \in \mathbb{N})u_{n+1} + 1 = \frac{2(u_n + 1)}{3 + u_n}$
 - b démontrer par récurrence que $(\forall n \in \mathbb{N})u_n > -1$



- d déduire que la suite (u_n) est décroissante et qu'elle est convergente.
- 3 posant $v_n = \frac{u_n + 2}{u_n + 1}; \forall n \in \mathbb{N}$
 - a calculer v_0
 - b calculer $v_{n+1} = \frac{3u_n + 5}{2(u_n + 1)}$
 - démontrer que la suite (v_n) est arithmétique de raison $\frac{1}{2}$
 - d calculer v_n en fonction de n
- 4 vérifier que $(\forall n \in \mathbb{N})u_n = \frac{-v_n + 2}{v_n 1}$ puis déduire que $(\forall n \in \mathbb{N})u_n = \frac{-n}{n + 2}$
- 5 Calculer $\lim_{n\to+\infty} u_n$
- 6 déduire que $(\forall n \in \mathbb{N})u_n = \frac{-n}{n+2}$ Calculer $\lim_{n \to +\infty} u_n$

Exercice

Considérons la suite numérique (U_n) définie par : $u_0 = 6$ et $u_{n+1} = \frac{1}{5}u_n + \frac{2}{5}$ pour tout $n \in \mathbb{N}$

- Calculer u_1 et u_2
- Montrer par récurrence que $(\forall n \in \mathbb{N})u_n > \frac{1}{2}$
- 3 Montrer que

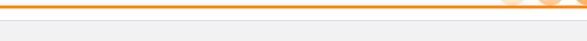
$$(\forall n \in \mathbb{N}) \ u_{n+1} - u_n = -\frac{4}{5} \left(u_n - \frac{1}{2} \right)$$

- Déduire la monotonie de (u_n) , puis montrer qu'elle est convergente.
- b Montrer que $(\forall n \in \mathbb{N})$ $u_n \le 1$, et déduire que

$$(\forall n \in \mathbb{N})\frac{1}{2} < u_n \le 1$$

- Posons $v_n = u_n \frac{1}{2}$, pour tout $n \in \mathbb{N}$
 - Calculer v_0 , et montrer que (v_n) est une suite géométrique de raison $q = \frac{1}{5}$.
 - b Calculer v_n en fonction de n, et déduire que

$$(\forall n \in \mathbb{N})u_n = \frac{1}{2} \left(11 \left(\frac{1}{5} \right)^n + 1 \right)$$



- Calculer $\lim_{x\to +\infty} u_n$
- 5 Posons

$$S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$$

Montrer que:

$$S_n = \frac{55}{8} \left(1 - \left(\frac{1}{5} \right)^n \right) + \frac{n}{2}$$

Exercice

Considérons la suite numérique (u_n) définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{2}u_n + \frac{1}{4} ; n \in \mathbb{N} \end{cases}$$

- 1 Calculer u_1 et u_2
- 2 Montrer par récurrence que $(\forall n \in \mathbb{N})u_n > \frac{1}{2}$
 - a Montrer que $(\forall n \in \mathbb{N})u_{n+1} u_n = -\frac{1}{2}\left(u_n \frac{1}{2}\right)$
 - b Déduire la monotonie de (u_n) , puis montrer qu'elle est convergente.
 - Montrer que $(\forall n \in \mathbb{N})$ $u_n \le 1$, et déduire que

$$(\forall n \in \mathbb{N})\frac{1}{2} < u_n \le 1$$

- Posons $v_n = u_n \frac{1}{2}$, pour tout $n \in \mathbb{N}$
 - Calculer v_0 , et montrer que (v_n) est une suite géométrique de raison $q = \frac{1}{2}$.
 - b Calculer v_n en fonction de n, et déduire que

$$(\forall n \in \mathbb{N})u_n = \frac{1}{2}\left(1 + \left(\frac{1}{2}\right)^n\right)$$

c Calculer $\lim_{n\to+\infty} u_n$

Exercice

Considérons la suite suivante : $\begin{cases} u_0 = 2 \\ u_{n+1} = 2 - \frac{1}{u_n} \end{cases}$

- Calculer u_1 et u_2
- Montrer que $(\forall n \in \mathbb{N}) : u_n > 1$
 - Montrer que $(\forall n \in \mathbb{N})$: $u_{n+1} u_n = \frac{-(u_n 1)^2}{u_n}$
 - b Étudier la monotonie de (u_n) et déduire que $(\forall n \in \mathbb{N})$: $u_n \leq 2$
 - C Déduire que $(\forall n \in \mathbb{N})$: $1 < u_n \le 2$
- Considérons la suite (v_n) tel que $v_n = \frac{u_n 2}{u_n 1}$; $n \in \mathbb{N}$
 - a Calculer v_0 et v_1
 - b Montrer que (v_n) est arithmétique de raison r = -1 et déterminer v_n en fonction de
 - Montrer que $(\forall n \in \mathbb{N})$: $u_n = \frac{v_n 2}{v_n 1}$ et déduire u_n en fonction de n. Calculer
 - d Calculer $S_n = v_0 + v_1 + \ldots + v_n$

