

Étude de fonctions

Étude de fonctions

Rappel:

La parité:

Définition D

•
$$f$$
 est paire \iff
$$\begin{cases} (\forall x \in D_f) : -x \in D_f \\ (\forall x \in D_f) : f(-x) = f(x) \end{cases}$$

•
$$f$$
 est paire $\iff \begin{cases} (\forall x \in D_f) : -x \in D_f \\ (\forall x \in D_f) : f(-x) = f(x) \end{cases}$
• f est impaire $\iff \begin{cases} (\forall x \in D_f) : -x \in D_f \\ (\forall x \in D_f) : f(-x) = -f(x) \end{cases}$

Les éléments de symétrie

Définition

• La droite d'équation x = a est un axe de symétrie de (C_f) si et seulement si :

$$\begin{cases} (\forall x \in D_f); 2a - x \in D_f \\ (\forall x \in D_f); f(2a - x) = f(x) \end{cases}$$

 $\begin{cases} (\forall x \in D_f); 2a - x \in D_f \\ (\forall x \in D_f); f(2a - x) = f(x) \end{cases}$ Le point I(a;b) est centre de symétrie de (C_f) si et seulement si :

$$\begin{cases} (\forall \in D_f); 2a - x \in D_f \\ (\forall \in D_f); f(2a - x) = 2b - f(x) \end{cases}$$

Exemple

La droite d'équation $x = \frac{1}{2}$ est un axe de symétrie de la fonction f définie par : $f(x) = x^2 - x + 1$.

$$f(x) = x^2 - x + 1.$$

On a $D_f = \mathbb{R}$.

• On a pour tout x de $\mathbb{R}: 2 \times \frac{1}{2} - x = 1 - x \in \mathbb{R}$

1. CHAPTER 1 ÉTUDE DE FONCTIONS

• On a pour tout x de \mathbb{R} :

$$f\left(2 \times \frac{1}{2} - x\right) = f(1 - x)$$

$$= (1 - x)^{2} - (1 - x) + 1$$

$$= 1 - 2x + x^{2} - 1 + x + 1$$

$$= x^{2} - x + 1$$

$$= f(x)$$

- Le point I(0,2) est un centre de symétrie de la fonction g définie par : $g(x) = -x^3 + 3x + 2$. En effet :
 - On a pour tout x de $\mathbb{R}: 2 \times 0 x = -x \in \mathbb{R}$
 - On a pour tout x de \mathbb{R} :

$$g(2 \times 0 - x) = g(-x)$$

$$= -(-x)^{3} + 3(-x) + 2$$

$$= x^{3} - 3x + 2$$

$$= 4 - (-x^{3} + 3x + 2)$$

$$= 4 - g(x)$$

Application

- Soit f la fonction définie par : $f(x) = \sqrt{x^2 4x + 3}$. Montrer que la droite d'équation x = 2 est un axe de symétrie de (C_f) .
- 2 Soit f la fonction définie par : $f(x) = 2x 3 \frac{3}{x+2}$. Montrer que le point $\Omega(-2; -7)$ est un centre de symétrie de (C_f) .

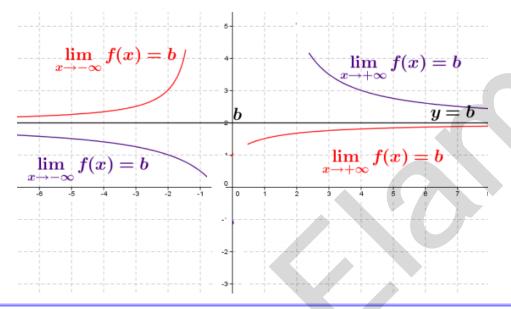
2 Branches infinies

D Définition

Soit (C_f) la courbe représentative d'une fonction f et M(x, f(x)) un point de (C_f) . On dit que (C_f) admet une branche infinies si l'une au moins des coordonnées de M tend vers l'infini.

Propriété

Si $\lim_{x \to a} f(x) = b$ alors la droite d'équation y = b est une asymptote horizontal à (\mathscr{C}_f) au voisinage $de \stackrel{x\rightarrow}{\infty}$.

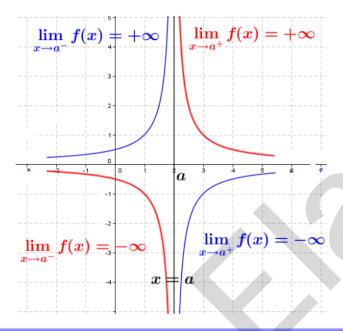


Exemple

On considère la fonction f définie sur $]2,+\infty[$ par : $f(x)=\frac{x^2}{x^2-4}$. On a $\lim_{x\to +\infty}f(x)=1$ donc (\mathscr{C}_f) admet une asymptote horizontal d'équation y=1 au voisinage de +∞.

Propriété

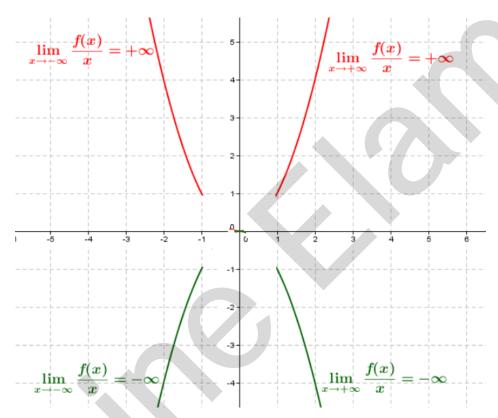
Si $\lim_{x\to a} f(x) = \infty$ alors la droite d'équation x = a est une asymptote vertical à (\mathcal{C}_f) au voisinage a.



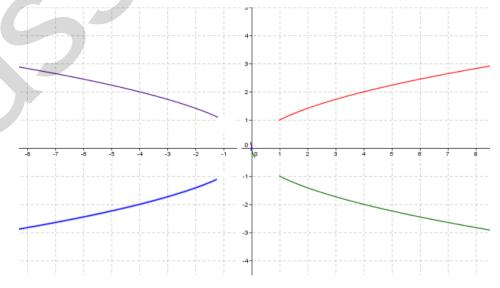
Exemple

On considère la fonction f définie sur $]2,+\infty[$ par $:f(x)=\frac{x^2}{x^2-4}.$ On a $\lim_{x\to 2^+}f(x)=+\infty$ donc (\mathscr{C}_f) admet une asymptote vertical d'équation x=2 à droite en 2.

Si $\lim_{x\to\infty} \frac{f(x)}{x} = \infty$ alors (\mathscr{C}_f) admet une branche parabolique de direction l'axe des ordonnées au voisinage de ∞ .



2 Si $\lim_{x\to\infty} \frac{f(x)}{x} = 0$ alors (\mathcal{C}_f) admet une branche parabolique de direction l'axe des abscisses au voisinage de ∞ .



3 Si $\lim_{x \to \infty} \frac{f(x)}{x} = a \neq 0$ alors on calcule $\lim_{x \to \infty} f(x) - ax$. Deux cas se présents :

Cours

3 Si $\lim_{x\to\infty} f(x) - ax = \infty$ alors () addite une branche parabolique de direction la 2023 te 2024

Yesterday better than today, tomorrow better than today

Exemple

On considère la fonction f définie sur \mathbb{R}^+ par : $f(x) = 2x + \sqrt{x}$.

On a $\lim_{x \to +\infty} f(x) = +\infty$, on calcul donc $\lim_{x \to +\infty} \frac{f(x)}{x} = 2$, par suite on calcul $\lim_{x \to +\infty} (f(x) - 2x) = +\infty$. D'où (\mathcal{C}_f) admet une branche parabolique de direction la droite d'équation y = 2x au voisinage de $+\infty$.

Application

On considère la fonction f définie par : $f(x) = \frac{3x^2 - 2x + 1}{x - 2}$.

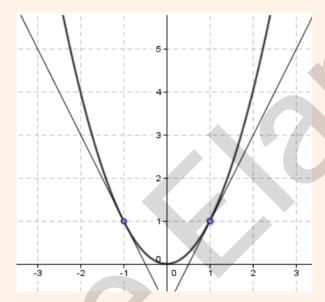
- 1 Déterminer D_f
- 2 Étudier la branche infinie de (C_f) en $-\infty$.

Concavité d'une fonction

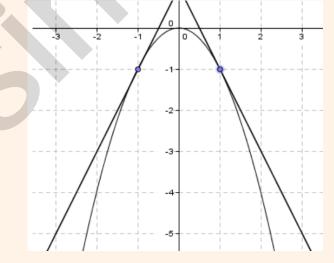
D Définition

Soit f une fonction dérivable sur un intervalle ouvert I.

On dit que f est convexe sur I si sa courbe représentative (C_f) est entièrement située au-dessus de chacune de ses tangentes.



On dit que f est concave sur I si sa courbe représentative (C_f) est entièrement située au-dessous de chacune de ses tangentes.



3 Un point où la courbe (C_f) traverse sa tangente s'appelle un point d'inflexion de (C_f) .

 $(0;0) \, est$

 $(C_f)est\ convexe$

un point d'inflexion

 $sur [0; +\infty[$

http://www.steinmaths.com

2023-2024

Propriété

Soit f une fonction deux fois dérivable sur un intervalle I.

- 1 Si f''(x) > 0 sur I, alors on dit que (C_f) est convexe.
- 2 Si f''(x) < 0 sur I, alors n dit que (C_f) est concave.
- Si f'' s'annule en a et change de signe, alors on dit que A(a, f(a)) est un point d'inflexion pour (C_f) .

Application

On considère la fonction définie sur $I = [0; \pi]$ par : $f(x) = \cos(x)$. Étudier la concavité de (C_f) sur I et vérifier que (C_f) possède un point d'inflexion K dont on détermine ses coordonnées.

Plan d'étude d'une fonction

- 1 Ensemble de définition.
- 2 La parité d'une fonction.
- 3 Élément de symétrie.
- 4 Limites aux bornes.
- 5 Dérivabilité.
- 6 Tableau de variation.
- 7 Les branches infinies.
- 8 La convexité et points d'inflexions.
- 9 Intersections avec les axes.
- 10 La représentation graphique.