Chapitre : Dérivation

Chapitre

Dérivation

Les orientations pédagogiques 1	Capacités attendues
- On rappellera la notion de dérivation et ses	
applications à travers des activités variées	
mettant en évidence son importance dans létude	
locale et globale des fonctions au programme, et	
surtout dans lapproximation locale dune fonction	
, létude du sens de variation dune fonction sur un	
intervalle, la détermination des extremums,	
létude du signe dune fonction ou dune inégalité	- Maitriser le calcul des dérivées des fonctions.
algébrique sur un intervalle ou la concavité de la	- Déterminer le signe dune fonction à partir de
courbe dune fonction numérique,on rappellera à	son tableau de variation ou de sa représentation
cette occasion la propriété caractéristique dune	graphique.
fonction constante ou strictement monotone sur	- Étudier des fonctions irrationnelles et des
un intervalle.	fonctions trigonométriques et des fonctions
- On introduira l'écriture différentielle	composées et les représenter graphiquement.
dy = f'(x)dx, adoptée en physique.	- Déterminer la monotonie de la fonction
- L'étude des fonctions de la forme : $x \to \sqrt[n]{u(x)}$	réciproque dune fonction dérivable et strictement
avec $(n \ge 3)$ et <i>u</i> fonction positive est hors	monotone sur un intervalle et la représenter
programme, on se limitera à la détermination de	graphiquement.
leurs dérivées.	- Déterminer le nombre dérivé en un point de la

fonction réciproque dune fonction.

Les prés-requis	Les extensions	
	► Théorème de rolle et T.A.F	
	► Études de fonctions	
► L'ordre dans ℝ	► Calculs d'intégrales et de primitives	
▶ Généralités sur les fonctions numériques	 Les équations différentielles 	
► limite d'une fonction numérique	▶ Mécanique du point	

Avant propos

Le mathématicien français d'origine italienne Joseph Lagrange a consacré de nombreux travaux à l'étude de fonctions. C'est à lui que l'on doit les termes de dérivée et de primitives. Il considérait en effet que la première dérivait de la seconde considérée elle-même comme la fonction première, donc la primitive. Lagrange s'est penché sur presque tous les domaines des mathématiques. Citons seulement ses travaux en mécanique céleste et ceux sur les équations différentielles.

Dérivabilité d'une fonction numérique (Rappels)

Dérivabilité d'une fonction en un point

Activité

Déterminer $\lim_{x\to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ dans les cas suivantes :

$$f(x) = x^2 + 2022x - 2023 \quad ; x_0 = 1$$

2
$$f(x) = x + \arctan(\sqrt{x+3})$$
 ; $x_0 = 0$

3
$$f(x) = \sqrt{4x+1}$$
 ; $x_0 = 2$

4
$$f(x) = \sqrt[3]{5x-7}$$
 ; $x_0 = 3$

Définition

Soit f ure fonction numérique définie sur I et $x_0 \in I$, on dit que f est dérivable en x_0 s'il existe un réel l tel que : $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l$

Le nombre l est appelé le nombre dérivée de f en x_0 , il est noté $f'(x_0)$.

Si on pose $h = x - x_0$, on aura $f'(x_0) = \lim_{h \to \infty} \frac{f(x_0 + h) - f(z_0)}{h}$

Définition

Soit f une fonction dérivable en x_0 .

La droite (T) d'équation $y = f'(x_0)(x - x_0) + f(x_0)$ est appelé la tangente à la courbe C_f de la fonction f an point d'abscisse x_0 .

La fonction $g(x) = f'(x_0)(x - x_0) + f(x_0)$ s'appelle l'approximation affine de f an voisinage de x_0 . on écrit $f(x) \simeq g(x)$ an voisinage de x_0 .

Proposition

Soit f une fonction numérique sur I ouvert et $x_0 \in I$, f est dérivable en x_0 si et seulement s'il existe un nombre $l \in \mathbb{R}$ et une fonction φ tel que : $\varphi : I \longrightarrow \mathbb{R}$ et $\forall x \in I$ $f(x) = f(x_0) + l(x - x_0) + (x - x_0) \cdot \varphi(x)$

et
$$\lim_{x\to x_0} \varphi(x) = 0$$

Dans ces conditions $f'(x_0) = l$.

Application

Soit f la fonction définie pur $f(x) = \sqrt[3]{x^3 + 8}$

- 1 Justifier que f est dérivable en 0.
- 2 En déduire une approximation affine de l'expression $\sqrt[3]{x^3+8}$ an voisinage de 0
- Déterminer une valeur approchée de $\sqrt[3]{8,004}$ et $\sqrt[3]{7,0995}$

Dérivabilité à droite-dérivabilité à gauche

Définition

✓ Soit f une fonction définie sur un intervalle $[x_0; x_0 + \alpha[, \alpha > 0 :$

On dit que f est dérivable à droite de x_0 s'il existe un réel l_1 tel que $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}=l_1$.

Le nombre l_1 est appelé le nombre dérivé de f à droite de x_0 il est noté $f'_d(x_0)$ et on écrit $l_1 = f'_d(x_0)$.

 \checkmark Soit f une fonction définie sur un intervalle $]x_0 - \alpha, x_0]$; $\alpha > 0$:

On dit que f est dérivable à gauche de x_0 s'il existe un réel l_2 tel que $\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0}=l_2$

Le nombre l_2 est appelé le nombre dérivé de f à gauche de x_0 il est noté $f_g'(x_0)$ et on écrit $l_2 = f_g'(x_0)$.

Proposition

Soit f une fonction numérique définie sur I ouvert et $x_0 \in I$, f est dérivable en x_0 si et seulement si elle at dérivable à droite et à gauche en x_0 avec $f'_d(n_0) = f'_g(x_0)$, on a donc $f'(x_0) = f'_d(x_0) = f'_g(x_0)$.

Application

En utilisant la définition étudier la dérivabilité de f en x_0 dans chacun des cas suivants

$$\begin{cases}
f(x) = \frac{\sin(x)}{\sqrt{x}}; & x > 0 \\
f(x) = \sqrt{\frac{x}{x-2}}; & x \le 0
\end{cases}; x_0 = 0$$

$$\begin{cases}
f(x) = \arctan(x\sqrt{x}); & x \ge 0 \\
f(x) = \sqrt{x^2 - x}; & x < 0
\end{cases}; x_0 = 0$$

$$\begin{cases} f(x) = \arctan(x\sqrt{x}); & x \ge 0 \\ f(x) = \sqrt{x^2 - x}; & x < 0 \end{cases} ; x_0 = 0$$

3
$$\begin{cases} f(x) = \frac{1 - \cos x}{x + \sin x}; & x > 0\\ f(x) = \frac{x^2}{2} E\left(\frac{1}{2x}\right); & x < 0 \quad ; x_0 = 0\\ f(0) = 0 \end{cases}$$

$$\begin{cases} f(x) = (x - 2023)^2 \cos\left(\frac{1}{x - 2023}\right); & x > 2023 \\ f(x) = \arctan\left(\sqrt{-x + 2023}\right); & x \leqslant 2023 \end{cases}; x_0 = 0$$

Remarque

Si f est dérivable à gauche et à droite de x_0 $f'_d(x_0) \neq f'_g(x_0)$, alors on dit que le point A(a; f(a)) est anguleux.

La dérivabilité et l'interprétation graphique

Si $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a \neq 0$ alors f est dérivable en x_0 et (\mathscr{C}_f) admet une tangente au point $A\left(x_0, f(x_0)\right)$ de coefficient directeur a. (Voir la figure 1)

L'équation réduite de cette tangente est : $y = f'(x_0)(x - x_0) + f(x_0)$.

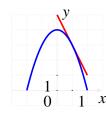


Figure 1

Si $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0$ alors f est dérivable en x_0 et (\mathcal{C}_f) admet une tangente parallèle à l'axe des abscisses au point $A(x_0, f(x_0))$. (Voir la figure 2)

Yesterday better than today, tomorrow better than today

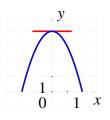


Figure 2

Si $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = a \neq 0$ alors f est dérivable à droite en x_0 et (\mathscr{C}_f) admet une demi-tangente au point $A(x_0, f(x_0))$ de coefficient directeur a.(Voir la figure 3)

L'équation réduite de cette demi-tangente est : $y = f_d'(x_0)(x - x_0) + f(x_0)$ et $x \ge x_0$.

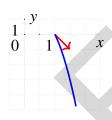


Figure 3

Si $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = 0$ alors f est dérivable à droite en x_0 et (\mathcal{C}_f) admet une demi-tangente parallèle à l'axe des abscisses au point $A(x_0, f(x_0))$. (Voir la figure 4)

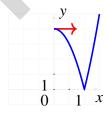


Figure 4

Si $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$ alors f n'est pas dérivable à droite en x_0 et (\mathscr{C}_f) admet une demitangente parallèle à l'axe des ordonnées d'équation $x = x_0$ au point $A(x_0, f(x_0))$ orientée vers le bas.(Voir la figure 5)

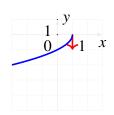


Figure 5

Yesterday better than today, tomorrow better than today

I.CHAPTER 1 DÉRIVATION

- Si $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0} = +\infty$ alors f n'est pas dérivable à droite en x_0 et (\mathscr{C}_f) admet une demitangente parallèle à l'axe des ordonnées d'équation $x = x_0$ au point $A(x_0, f(x_0))$ orientée vers le haut.(Voir la figure 6)

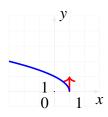
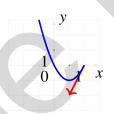


Figure 6

Si $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = a \neq 0$ alors f est dérivable à gauche en x_0 et (\mathscr{C}_f) admet une demi-tangente au point $A(x_0, f(x_0))$ de coefficient directeur a.(Voir la figure 7) L'équation réduite de cette demi-tangente est : $y = f'_g(x_0)(x - x_0) + f(x_0)$ et $x \le x_0$.



Si $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = 0$ alors f est dérivable à gauche en x_0 et (\mathscr{C}_f) admet une demi-tangente parallèle à l'axe des abscisses au point $A(x_0, f(x_0))$.(Voir la figure 8)

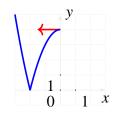


Figure 8

9 Si $\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0} = -\infty$ alors f n'est pas dérivable à gauche en x_0 et (\mathscr{C}_f) admet une demitangente parallèle à l'axe des ordonnées d'équation $x = x_0$ au point $A(x_0, f(x_0))$ orientée vers le haut.(Voir la figure 9)

Yesterday better than today, tomorrow better than today

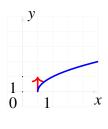


Figure 9

Si $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$ alors f n'est pas dérivable à gauche en x_0 et (\mathscr{C}_f) admet une demitangente parallèle à l'axe des ordonnées d'équation $x = x_0$ au point $A(x_0, f(x_0))$ orientée vers le bas. (Voir la figure 10)

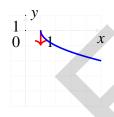


Figure 10

Application

Soit f la fonction définie par $f(x) = x + \sqrt{x^2 - 2x}$

- Déterminer D l'ensemble de définition de f
- Étudier la dérivabilité de f à droite en 0 et à gauche en $2 x_0 = 1$; puis interpréter les résultats

Dérivabilité d'une fonction sur un intervalle

Définition

Soit f une fonction numérique définie sur un intervalle.

On dit que f est dérivable sur I si elle est dérivable en tout point x de I. On note f' la fonction qui à $x \in I$ associe le nombre dérivée de f en x. on l'appelle la fonction dérivée de f, ou plus simplement la dérivée de f. On écrit aussi : $f' = \frac{d'f}{dx}$.

Remarque

- \blacklozenge f est dérivable sur [a,b[si elle est dérivable sur]a,b[et dérivable à droite en a
- \blacklozenge f est dérivable sur [a,b] si elle est dérivable sur [a,b] et dérivable à gauche en b
- \blacklozenge f est dérivable sur [a,b] si elle est dérivable sur]a,b[, dérivable à droite en a et à

gauche en b

Dérivées de fonctions usuelles

Propriété

Le tableau ci-dessous résume les dérivées de quelques fonction usuelles :

La fonction f	La fonction dérivée f'	$D_{f'}$
f(x) = a	f'(x) = 0	D_f
f(x) = x	f'(x) = 1	D_f
$f(x) = x^n; (n \in \mathbb{N}^* - \{1\})$	$f'(x) = nx^{n-1}$	D_f
$f(x) = x^n; (n \in \mathbb{Z}^* - \{1\})$	$f'(x) = nx^{n-1}$	\mathbb{R}^*
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$]0,+∞[
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	D_f
$f(x) = \sin(x)$	$f'(x) = \cos(x)$	D_f
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$	D_f
$f(x) = \tan(x)$	$f'(x) = 1 + \tan^2(x)$	D_f
$f(x) = \sin(ax + b)$	$f'(x) = a\cos(ax+b)$	D_f
$f(x) = \cos(ax + b)$	$f'(x) = -a\sin(ax+b)$	D_f
$f(x) = \tan(ax + b)$	$f'(x) = a\left(1 + \tan^2(ax + b)\right)$	D_f

Opérations sur les fonctions dérivables

Propriété

- → Si f et g sont deux fonctions dérivables sur I et $\lambda \in \mathbb{R}$ alors les fonctions f+g; $f \times g$; λf sont dérivables sur I.
- → Si f et g sont deux fonctions dérivables sur I et g ne s'annule pas sur I alors les fonctions $\frac{1}{g}$ et $\frac{f}{g}$ sont dérivables sur I.

Fonction	Intervalle	Fonction dérivée
f+g	I	f'+g'
$\alpha f \ (\alpha \in \mathbb{R})$	I	$\alpha f'$
$(f \times g)$	I	$f' \times g + g' \times f$
\sqrt{f}	Tout intervalle inclus dans $\{x \in I/f(x) > 0\}$	$\frac{f'}{2\sqrt{f}}$
$\frac{1}{f}$	Tout intervalle inclus dans $\{x \in I/f(x) \neq 0\}$	$\frac{-f'}{f^2}$
$\left(\frac{f}{g}\right)$	Tout intervalle inclus dans $\{x \in I/g(x) \neq 0\}$	$\frac{f'g - g'f}{g^2}$
$f^n(n) \in$	I	$nf^{n-1} \times f'$
$\mathbb{N}-\{0,1\}$)		
$\frac{1}{f^n} \ (n \in \mathbb{N}^*)$	Tout intervalle inclus dans $\{x \in I/f(x) \neq 0\}$	$-nf^{-n-1} \times f'$

Application

Calculer f'(x) pour chacun des fonctions suivantes :

1
$$f(x) = cos(3x-1) - \frac{x}{(x+1)^2 + 1}, x \in \mathbb{R} - \{1\}$$

2
$$f(x) = x - 1 + \sqrt{x^2 + 1}$$
 , $x < 0$

1 Dérivation et continuité

Proposition

Soit f une fonction numérique définie sur I ouvert et $x_0 \in I$, f est dérivable en x_0 si et seulement si elle at dérivable à droite et à gauche en x_0 avec $f'_d(n_0) = f'_g(x_0)$, on a donc $f'(x_0) = f'_d(x_0) = f'_g(x_0)$.

Proposition

Soit f une fonction numérique définie sur I ouvert et $x_0 \in I$, si f est dérivable en x_0 alors f est continue en x_0 .

Résultat : Soit f une fonction numérique définie sur I ouvert et $x_0 \in I$, si f n'est pas continue en x_0 alors f n'est pas dérivable en x_0 .

Remarque

La réciproque de la proposition précédente est fausse. Par exemple $x \mapsto |x|$ est continue en O mais n'est pas dérivable en O.

2 Dérivabilité des fonctions composées

Activité

Soit f et g deux fonctions définies sur $\mathbf{x} \in \mathbf{IR}$ par : $\mathbf{f}(\mathbf{x}) = \mathbf{cos}(\mathbf{x})$; $\mathbf{g}(\mathbf{x}) = \mathbf{x^2} - \mathbf{2x}$

- Calculer f'(x) et g'(x) pour tout $\mathbf{x} \in \mathbf{IR}$
- 2 Calculer $\mathbf{f}'(\mathbf{x}) \times \mathbf{g}'(\mathbf{f}(\mathbf{x}))$
- Soith $(\mathbf{x}) = \mathbf{gof}(\mathbf{x})$ Déterminer h(x) puis calculer $\mathbf{h}(x)$
- Comparer $\mathbf{h}'(\mathbf{x})$ et $\mathbf{f}'(\mathbf{x}) \times \mathbf{g}'(\mathbf{f}(\mathbf{x}))$

Théorème

Soit f une fonction définie sur un intervalle ouvert I contenant un réel a et g une fonction définie sur un intervalle ouvert J contenant f(a).

Si f est dérivable en a et g est dérivable en f(a), alors $g \circ f$ est dérivable en a et on a :

$$(g \circ f)'(a) = f'(a) \times g'(f(a)).$$

Corollaire :

Si f est dérivable sur un intervalle I et g est dérivable sur un intervalle J contenant f(I) alors $g \circ f$ est dérivable sur I et on a : $(g \circ f)'(x) = f'(x) \times g'(f(x))$, pour tout x de I.

- Exemple

Calculons h'(x) le dérivée de fonction suivante : $h(x) = \sin(x^2 - 4x + 1)$:

En posant $g(x) = \sin(x)$ et $f(x) = x^2 - 4x + 1$, on aura pour $x \in \mathbb{R}$: $\mathbf{h}(\mathbf{x}) = \mathbf{gof}(\mathbf{x})$ Puisque f est dérivable sur \mathbb{R} Et g est dérivable sur \mathbb{R} , alors la fonction h est dérivable sur \mathbf{IR} et de plus, Pour tout $\mathbf{x} \in \mathbb{R}$ on a :

$$h'(x) = (\sin(x^2 - 4x + 1))'$$

$$= (x^2 - 4x + 1)' \times \sin'(x^2 - 4x + 1)$$

$$= (2x - 4) \times \cos(x^2 - 4x + 1)$$

Application

- Montrer que la fonction $u: x \to cos(\sqrt{x})$ est dérivable sur \mathbb{R}_+^* puis déterminer sa dérivée.
- Montrer que la fonction $v: \mathbf{x} \to sin(\sqrt{\mathbf{x}^2 + \mathbf{5}})$ dérivable \mathbb{R} puis déterminer sa dérivée.

Dérivée de la fonction réciproque

Activité

Soit f la fonction numérique définie par $f(x) = \frac{1}{2}x^2 - x + \frac{5}{2}, x \ge 1$.

- Montrer que f réalise une bijection de $[1, +\infty[$ sur $[2, +\infty[$
- Déterminer $f^{-1}(x)$ pour tout $x \in [2, +\infty[$.
- Montrer que f^{-1} est dérivable sur $]2, +\infty[$ puis déterminer $(f^{-1})'(x)$ pour tout $x \in]2, +\infty[$.

4 Vérifier que pour tout $x \in]2, +\infty[: (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$

Propriété

Soit f une fonction continue et strictement monotone sur un intervalle I, a un réel de I.

Si f est dérivable en a et $f'(a) \neq 0$ alors f^{-1} est dérivable en b = f(a) et $(f^{-1})'(b) = \frac{1}{f'(a)}$.

Corollaire:

Si f est dérivable sur I et f' ne s'annule pas sur I alors f^{-1} est dérivable sur f(I) et pour tout $x \in f(I)$, on a :

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Exemple

Soit f la fonction définie sur IR par : $f(x) = x^3 + x + 3$

- Montrer que f admet une fonction réciproque f^{-1} définit sur un intervalle J que l'on déterminera
- Montrer que \mathbf{f}^{-1} est dérivable en 5 et déterminer $(\mathbf{f}^{-1})'(5)$

Solution:

La fonction f est continue sur IR car c'est une polynôme La fonction f est dérivable sur IR, et pour tout x dans IR on a :

$$\mathbf{f'}(\mathbf{x}) = 3\mathbf{x}^2 + 1 > 0$$

Donc f est strictement croissante sur IR

D'où f admet une fonction réciproque f^{-1} définit sur J et :

$$J = f(\mathbb{R}) = f(] - \infty; +\infty[) = \lim_{x \to -\infty} \mathbf{f}(\mathbf{x}); \lim_{x \to +\infty} f(x)[=] - \infty; +\infty[=\mathbb{R}]$$

2 On remarque f(1) = 5 donc $f^{-1}(5) = 1$

On a la fonction f est dérivable en 1 et $f'(1) = 4 \neq 0$

Donc \mathbf{f}^{-1} est dérivable en 5; et on a : $(\mathbf{f}^{-1})'(5) = \frac{1}{f'(5)} = \frac{1}{4}$

Application

Soit
$$f(x) = \sqrt{x^2 + 1} - x$$
, $x \in \mathbb{R}$

- Montrer que f est une bijection de \mathbb{R} sur un intervalle J à déterminer puis calculer $(f^{-1})'(1)$.
- 2 Soit $g(x) = x^3 3x 3, x \in [1, +\infty[$.
 - a Montrer que g admet une fonction réciproque puis déterminer son ensemble de définition
 - b Montrer que l'équation g(x) = 0 admet une unique solution α dans $[1, +\infty[$.
 - Montrer que $\alpha = \sqrt[3]{3\alpha + 3}, (g^{-1})'(0) = \frac{1}{3(\alpha^2 1)}.$

Dérivée de la fonction Arc tangente

Proposition

La fonction $x \to \arctan x$ est dérivable sur \mathbb{R} on a

$$(\forall x \in \mathbb{R}); (\mathbf{f}^{-1})'(\mathbf{x}) = \frac{1}{1+\mathbf{x}^2}$$

EXEMPLES

Pour tout $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[$, on pose $f(x) = \tan x$,

f est dérivable sur] $-\frac{\pi}{2}$; $\frac{\pi}{2}$ [, et pour tout $x \in] -\frac{\pi}{2}$; $\frac{\pi}{2}$ [,

On a : $\mathbf{f}'(x) = 1 + \tan^2 x$

Comme f' ne s'annule pas sur $]-\frac{\pi}{2}; \frac{\pi}{2}[$ donc $f^{-1}=$ arctan est dérivable sur $f(]-\frac{\pi}{2}; \frac{\pi}{2}[)=\mathbb{R}$, et pour tout $x \in \mathbb{R}$; on a :

$$(\mathbf{f}^{-1})'(\mathbf{x}) = \frac{1}{\mathbf{f}'(\mathbf{f}^{-1}(\mathbf{x}))}$$

$$= \frac{1}{\mathbf{f}'(\arctan \mathbf{x})}$$

$$= \frac{1}{1 + \tan^2(\arctan \mathbf{x})}$$

$$= \frac{1}{1 + \mathbf{x}^2}$$

Proposition

Soit $x \to \mathbf{u}(x)$ une fonction dérivable sur un intervalle I alors on a, la fonction $x \to \arctan(u(x))$ est dérivable sur I

Et pour tout $x \in \mathbb{R}$; on a :

$$\text{arctan}'(u(x)) = \frac{u'(x)}{1 + u^2(x)}$$

- Exemple

On considère la fonction définie par : $f(x) = \arctan(x^2 + 1)$, montrons que f est dérivables sur \mathbb{R} , puis calculer $\mathbf{f}'(\mathbf{x})$

On considère la fonction définie par : $f(x) = \arctan(x^2 + 1)$, f est dérivables sur \mathbb{R} , car la fonction $u: x \to x^2 + 1$ est dérivable sur \mathbb{R} , de plus $\forall x \in \mathbb{R}: u'(x) = 2x$ et pour tout $x \in \mathbb{R}$; on $a: f'(x) = \frac{2x}{1 + (1 + x^2)^2}$

Application

Calculer f'(x) pour chacun des fonctions suivantes :

$$f(x) = Arctan\left(\frac{1}{x-1}\right) - \frac{x}{(x+1)^2 + 1}, x \in \mathbb{R} - \{1\}$$

2
$$f(x) = x \cdot Arctan\left(\frac{1}{x-1}\right), \quad x \in \mathbb{R} - \{1\}$$

3
$$f(x) = \frac{4}{\pi} \cdot Arctin\left(-x + \sqrt{x^2 + 1}\right), x < 0$$

Exercice

- Montrer que $(\forall x \in]0; +\infty[); \arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$
- 2 Montrer que; $(\forall x \in]-\infty; 0[)$; $\arctan x + \arctan \frac{1}{x} = -\frac{\pi}{2}$

Dérivée de la fonction Racine n-ième

a) Dérivée de la fonction $x \to \sqrt[n]{x}$

Activité

Soit **n** un entier naturel supérieur ou égal à 2

Considérons la fonction u définit sur $[0; +\infty[par u(x) = \sqrt[n]{x}]$

- 1 Étudier la dérivabilité de u à droite de 0
- 2 Calculer la dérivée de la fonction *u*

Proposition

La fonction $x \to \sqrt[n]{x}$ est dérivable sur IR_*^+

Et on a pour tout $x \in \mathbf{IR}_*^+$:

$$(\sqrt[n]{\mathbf{x}})' = \frac{1}{n\sqrt[n]{\mathbf{x}^{\mathbf{n}-1}}}$$

b) Dérivée de la fonction $x \to x \to \sqrt[n]{\mathbf{f}(\mathbf{x})}$

Proposition

Si f une fonction dérivable et strictement positive sur un intervalle *I*,

Alors la fonction $x \to \sqrt[n]{f(x)}$ est dérivable sur I et sa fonction dérivée est donnée par :

$$(\sqrt[n]{f})'(x) = \frac{f'(x)}{n \times (\sqrt[n]{f(x)})^{n-1}}$$

Exemple

Montrons que f est dérivable sur son domaine de définition puis calculer sa dérivée de chacune des cas suivantes :

f(**x**) = $\sqrt[4]{\mathbf{x}^5}$: On a la fonction $u: x \mapsto x^5$ est dérivable et strictement positive sur]0; $+\infty$ [, de plus $u'(x) = 5x^4$

La fonction f est dérivable sur $]0; +\infty[$

$$f'(x) = \frac{5x^4}{4\sqrt[4]{(x^5)^3}} = \frac{5x^4}{4\sqrt[4]{x^{15}}}$$

2 $f(x) = \sqrt[4]{1 + \cos^2(x)}$: On a la fonction $u: x \mapsto 1 + \cos^2(x)$ est dérivable et strictement

positive sur \mathbb{R} , de plus $u'(x) = -2\sin(x)\cos(x)$ Donc la fonction f est dérivable sur \mathbb{R}

$$f'(x) = \frac{-2\sin(x)\cos(x)}{4\sqrt[4]{(1+\cos^2(x))^3}} = \frac{-\sin(x)\cos(x)}{2\sqrt[4]{(1+\cos^2(x))^3}}$$

Application

Étudier la dérivabilité de f dans son ensemble de définition et déterminer sa dérivée dans chacun des cas suivants:

$$f(x) = \sqrt[3]{x} \arctan(\sqrt{x})$$
 ; $f(x) = \sqrt[3]{(x-1)^2}$

$$f(x) = x - 2\sqrt[3]{x - 1}$$
 ; $f(x) = |2x + 3|^{\frac{3}{4}}$

